论文标题

基于Zwicky瞬态设施搜索13个中子星星合并的Kilonova光度函数限制

Kilonova Luminosity Function Constraints based on Zwicky Transient Facility Searches for 13 Neutron Star Mergers

论文作者

Kasliwal, Mansi M., Anand, Shreya, Ahumada, Tomas, Stein, Robert, Carracedo, Ana Sagues, Andreoni, Igor, Coughlin, Michael W., Singer, Leo P., Kool, Erik C., De, Kishalay, Kumar, Harsh, AlMualla, Mouza, Yao, Yuhan, Bulla, Mattia, Dobie, Dougal, Reusch, Simeon, Perley, Daniel A., Cenko, S. Bradley, Bhalerao, Varun, Kaplan, David L., Sollerman, Jesper, Goobar, Ariel, Copperwheat, Christopher M., Bellm, Eric C., Anupama, G. C., Corsi, Alessandra, Nissanke, Samaya, Agudo, Ivan, Bagdasaryan, Ashot, Barway, Sudhanshu, Belicki, Justin, Bloom, Joshua S., Bolin, Bryce, Buckley, David A. H., Burdge, Kevin B., Burruss, Rick, Caballero-Garcıa, Maria D., Cannella, Chris, Castro-Tirado, Alberto J., Cook, David O., Cooke, Jeff, Cunningham, Virginia, Dahiwale, Aishwarya, Deshmukh, Kunal, Dichiara, Simone, Duev, Dmitry A., Dutta, Anirban, Feeney, Michael, Franckowiak, Anna, Frederick, Sara, Fremling, Christoffer, Gal-Yam, Avishay, Gatkine, Pradip, Ghosh, Shaon, Goldstein, Daniel A., Golkhou, V. Zach, Graham, Matthew J., Graham, Melissa L., Hankins, Matthew J., Helou, George, Hu, Youdong, Ip, Wing-Huen, Jaodand, Amruta, Karambelkar, Viraj, Kong, Albert K. H., Kowalski, Marek, Khandagale, Maitreya, Kulkarni, S. R., Kumar, Brajesh, Laher, Russ R., Li, K. L., Mahabal, Ashish, Masci, Frank J., Miller, Adam A., Mogotsi, Moses, Mohite, Siddharth, Mooley, Kunal, Mroz, Przemek, Newman, Jeffrey A., Ngeow, Chow-Choong, Oates, Samantha R., Patil, Atharva Sunil, Pandey, Shashi B., Pavana, M., Pian, Elena, Riddle, Reed, Sanchez-Ramırez, Ruben, Sharma, Yashvi, Singh, Avinash, Smith, Roger, Soumagnac, Maayane T., Taggart, Kirsty, Tan, Hanjie, Tzanidakis, Anastasios, Troja, Eleonora, Valeev, Azamat F., Walters, Richard, Waratkar, Gaurav, Webb, Sara, Yu, Po-Chieh, Zhang, Bin-Bin, Zhou, Rongpu, Zolkower, Jeffry

论文摘要

我们对在Ligo/Wirgo的第三次观察过程中进行了系统的搜索,以对13个引力波(GW)触发器进行光学对应物(GW)触发器。我们搜索了与Zwicky Transient设施(ZTF)(ZTF)的二进制中子星(BNS)和Neutron Star Black Hole(NSBH)合并的本地化,并与全球观察瞬态(成长)协作的全球观察瞬态接力进行了跟进。 GW触发器的中位定位为4480度^2,中值距离为267 MPC,误报率为每年1.5至1E-25。 ZTF覆盖范围的封闭概率为39%,中值深度为20.8mag,中位响应时间为1.5小时。成长团队的O3随访包括340个UVOIR光度值,64个OIR光谱和3台无线电。我们没有发现有希望的Kilonova(放射性驱动的对应物),并且转换上限以限制基础的Kilonova亮度函数。假设所有Kilonovae在发现时至少与GW170817一样发光(-16.1mag),我们计算检测到零基洛诺维的关节概率仅为4.2%。如果我们假设所有Kilonovae都比-16.6MAG(GW170817的推断峰值幅度)和1 mag/Day(类似于GW170817)更明亮,则零检测的关节概率为7%。如果我们将NSBH和BNS种群分开,则假设所有Kilonovae都比-16.6mag明亮,则零检测的联合可能性为NSBH的9.7%,而BNS合并为7.9%。此外,假定的kilonovae的<57%(<89%)的阳光明亮(假设衰落)的进化可能比-16.6mag更明亮,置信度为90%。如果我们进一步说明了每个GW触发器的在线陆地概率,我们发现<68%的假定基洛诺维(Kilonovae)可能比-16.6mag更明亮。与模型网格相比,我们发现一些Kilonovae必须具有MEJ <0.03 MSUN或XLAN> 1E-4或PHI> 30DEG与我们的限制保持一致。 (简略)

We present a systematic search for optical counterparts to 13 gravitational wave (GW) triggers involving at least one neutron star during LIGO/Virgo's third observing run. We searched binary neutron star (BNS) and neutron star black hole (NSBH) merger localizations with the Zwicky Transient Facility (ZTF) and undertook follow-up with the Global Relay of Observatories Watching Transients Happen (GROWTH) collaboration. The GW triggers had a median localization of 4480 deg^2, median distance of 267 Mpc and false alarm rates ranging from 1.5 to 1e-25 per yr. The ZTF coverage had a median enclosed probability of 39%, median depth of 20.8mag, and median response time of 1.5 hr. The O3 follow-up by the GROWTH team comprised 340 UVOIR photometric points, 64 OIR spectra, and 3 radio. We find no promising kilonova (radioactivity-powered counterpart) and we convert the upper limits to constrain the underlying kilonova luminosity function. Assuming that all kilonovae are at least as luminous as GW170817 at discovery (-16.1mag), we calculate our joint probability of detecting zero kilonovae is only 4.2%. If we assume that all kilonovae are brighter than -16.6mag (extrapolated peak magnitude of GW170817) and fade at 1 mag/day (similar to GW170817), the joint probability of zero detections is 7%. If we separate the NSBH and BNS populations, the joint probability of zero detections, assuming all kilonovae are brighter than -16.6mag, is 9.7% for NSBH and 7.9% for BNS mergers. Moreover, <57% (<89%) of putative kilonovae could be brighter than -16.6mag assuming flat (fading) evolution, at 90% confidence. If we further account for the online terrestrial probability for each GW trigger, we find that <68% of putative kilonovae could be brighter than -16.6mag. Comparing to model grids, we find that some kilonovae must have Mej < 0.03 Msun or Xlan>1e-4 or phi>30deg to be consistent with our limits. (Abridged)

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源