论文标题
基于Zwicky瞬态设施搜索13个中子星星合并的Kilonova光度函数限制
Kilonova Luminosity Function Constraints based on Zwicky Transient Facility Searches for 13 Neutron Star Mergers
论文作者
论文摘要
我们对在Ligo/Wirgo的第三次观察过程中进行了系统的搜索,以对13个引力波(GW)触发器进行光学对应物(GW)触发器。我们搜索了与Zwicky Transient设施(ZTF)(ZTF)的二进制中子星(BNS)和Neutron Star Black Hole(NSBH)合并的本地化,并与全球观察瞬态(成长)协作的全球观察瞬态接力进行了跟进。 GW触发器的中位定位为4480度^2,中值距离为267 MPC,误报率为每年1.5至1E-25。 ZTF覆盖范围的封闭概率为39%,中值深度为20.8mag,中位响应时间为1.5小时。成长团队的O3随访包括340个UVOIR光度值,64个OIR光谱和3台无线电。我们没有发现有希望的Kilonova(放射性驱动的对应物),并且转换上限以限制基础的Kilonova亮度函数。假设所有Kilonovae在发现时至少与GW170817一样发光(-16.1mag),我们计算检测到零基洛诺维的关节概率仅为4.2%。如果我们假设所有Kilonovae都比-16.6MAG(GW170817的推断峰值幅度)和1 mag/Day(类似于GW170817)更明亮,则零检测的关节概率为7%。如果我们将NSBH和BNS种群分开,则假设所有Kilonovae都比-16.6mag明亮,则零检测的联合可能性为NSBH的9.7%,而BNS合并为7.9%。此外,假定的kilonovae的<57%(<89%)的阳光明亮(假设衰落)的进化可能比-16.6mag更明亮,置信度为90%。如果我们进一步说明了每个GW触发器的在线陆地概率,我们发现<68%的假定基洛诺维(Kilonovae)可能比-16.6mag更明亮。与模型网格相比,我们发现一些Kilonovae必须具有MEJ <0.03 MSUN或XLAN> 1E-4或PHI> 30DEG与我们的限制保持一致。 (简略)
We present a systematic search for optical counterparts to 13 gravitational wave (GW) triggers involving at least one neutron star during LIGO/Virgo's third observing run. We searched binary neutron star (BNS) and neutron star black hole (NSBH) merger localizations with the Zwicky Transient Facility (ZTF) and undertook follow-up with the Global Relay of Observatories Watching Transients Happen (GROWTH) collaboration. The GW triggers had a median localization of 4480 deg^2, median distance of 267 Mpc and false alarm rates ranging from 1.5 to 1e-25 per yr. The ZTF coverage had a median enclosed probability of 39%, median depth of 20.8mag, and median response time of 1.5 hr. The O3 follow-up by the GROWTH team comprised 340 UVOIR photometric points, 64 OIR spectra, and 3 radio. We find no promising kilonova (radioactivity-powered counterpart) and we convert the upper limits to constrain the underlying kilonova luminosity function. Assuming that all kilonovae are at least as luminous as GW170817 at discovery (-16.1mag), we calculate our joint probability of detecting zero kilonovae is only 4.2%. If we assume that all kilonovae are brighter than -16.6mag (extrapolated peak magnitude of GW170817) and fade at 1 mag/day (similar to GW170817), the joint probability of zero detections is 7%. If we separate the NSBH and BNS populations, the joint probability of zero detections, assuming all kilonovae are brighter than -16.6mag, is 9.7% for NSBH and 7.9% for BNS mergers. Moreover, <57% (<89%) of putative kilonovae could be brighter than -16.6mag assuming flat (fading) evolution, at 90% confidence. If we further account for the online terrestrial probability for each GW trigger, we find that <68% of putative kilonovae could be brighter than -16.6mag. Comparing to model grids, we find that some kilonovae must have Mej < 0.03 Msun or Xlan>1e-4 or phi>30deg to be consistent with our limits. (Abridged)