论文标题

通过平均反馈控制运输机器人群

Transporting Robotic Swarms via Mean-Field Feedback Control

论文作者

Zheng, Tongjia, Han, Qing, Lin, Hai

论文摘要

随着人工智能和机器人技术的快速发展,运输大量的网络机器人在不久的将来可以预见的应用。群体机器人技术的现有研究主要遵循自下而上的哲学,并具有预定义的当地协调和控制规则。但是,验证全球需求并分析其绩效是艰巨的。这促使我们采用自上而下的方法,并制定一种可证明的控制策略来部署机器人群以实现所需的全球配置。具体而言,我们使用平均局部部分微分方程(PDE)来对群进行建模并控制其平均场密度(即概率密度),并使用均值场上的反馈在有界的空间域上进行模型。提出的控制法使用密度估计作为反馈信号,并生成相应的速度字段,通过在单个机器人上进行局部作用,将其全局分布引导到目标曲线。因此,速度字段的设计集中,但是控制器的实现可以完全分布 - 单个机器人感知速度场并相应地得出自己的速度控制信号。关键贡献在于应用投入到国家稳定性(ISS)的概念表明,在密度估计错误方面,扰动的闭环系统(非线性和时间变化的PDE)是本地ISS的。使用基于代理的模拟验证了拟议的控制定律的有效性。

With the rapid development of AI and robotics, transporting a large swarm of networked robots has foreseeable applications in the near future. Existing research in swarm robotics has mainly followed a bottom-up philosophy with predefined local coordination and control rules. However, it is arduous to verify the global requirements and analyze their performance. This motivates us to pursue a top-down approach, and develop a provable control strategy for deploying a robotic swarm to achieve a desired global configuration. Specifically, we use mean-field partial differential equations (PDEs) to model the swarm and control its mean-field density (i.e., probability density) over a bounded spatial domain using mean-field feedback. The presented control law uses density estimates as feedback signals and generates corresponding velocity fields that, by acting locally on individual robots, guide their global distribution to a target profile. The design of the velocity field is therefore centralized, but the implementation of the controller can be fully distributed -- individual robots sense the velocity field and derive their own velocity control signals accordingly. The key contribution lies in applying the concept of input-to-state stability (ISS) to show that the perturbed closed-loop system (a nonlinear and time-varying PDE) is locally ISS with respect to density estimation errors. The effectiveness of the proposed control laws is verified using agent-based simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源