论文标题
Facebook搜索中基于嵌入的检索
Embedding-based Retrieval in Facebook Search
论文作者
论文摘要
在诸如Facebook之类的社交网络中的搜索提出了与经典网络搜索不同的挑战:除了查询文本外,重要的是要考虑搜索者的上下文以提供相关结果。他们的社交图是此上下文不可或缺的一部分,是Facebook搜索的独特方面。虽然多年来在EB搜索引擎中应用了基于嵌入的检索(EBR),但Facebook搜索仍然主要基于布尔匹配模型。在本文中,我们讨论将EBR应用于Facebook搜索系统的技术。我们介绍了为个性化搜索建模的统一嵌入框架,以模拟语义嵌入,并在基于倒置索引的典型搜索系统中提供基于嵌入的检索系统。我们讨论了整个系统端到端优化的各种技巧和经验,包括ANN参数调整和全堆栈优化。最后,我们在两个有关建模的高级主题上提出了进度。我们评估了EBR在Facebook搜索的垂直方面,并在线A/B实验中观察到了大量指标。我们认为,本文将提供有用的见解和经验,以帮助人们在搜索引擎中开发基于嵌入式的检索系统。
Search in social networks such as Facebook poses different challenges than in classical web search: besides the query text, it is important to take into account the searcher's context to provide relevant results. Their social graph is an integral part of this context and is a unique aspect of Facebook search. While embedding-based retrieval (EBR) has been applied in eb search engines for years, Facebook search was still mainly based on a Boolean matching model. In this paper, we discuss the techniques for applying EBR to a Facebook Search system. We introduce the unified embedding framework developed to model semantic embeddings for personalized search, and the system to serve embedding-based retrieval in a typical search system based on an inverted index. We discuss various tricks and experiences on end-to-end optimization of the whole system, including ANN parameter tuning and full-stack optimization. Finally, we present our progress on two selected advanced topics about modeling. We evaluated EBR on verticals for Facebook Search with significant metrics gains observed in online A/B experiments. We believe this paper will provide useful insights and experiences to help people on developing embedding-based retrieval systems in search engines.