论文标题

大而无限的归纳感应类型

Large and Infinitary Quotient Inductive-Inductive Types

论文作者

Kovács, András, Kaposi, Ambrus

论文摘要

商的归纳感应类型(QIITS)是通用的归纳类型,允许对先前声明的类型进行索引,并允许使用平等构造函数。 QIIT对于类型理论的代数描述以及对真实,序数和超现实数字的建设性定义特别有用。我们为大型QIIT,大消除,递归方程式和无限构造器开发了新的元病。与先前的工作一样,我们使用一个类型理论描述了QIIT,其中每个上下文代表QIIT签名。但是,在我们的情况下,签名理论还可以描述其自身的签名宇宙大小。我们使用自我描述和教堂编码的签名概念引导签名模型理论,而无需使用复杂的原始语法或假设现有的签名内部质量。我们通过将每个签名建模为有限完整的CWF(与家族的代数)来给出语义来描述QIITS。与Finality Qiits相比,我们还需要在语义中的代数同构下显示不变性。我们通过将签名类型建模为同振元件来做到这一点。最后,我们通过术语模型构建表明,每个QIIT都是从签名理论的语法中构造的。

Quotient inductive-inductive types (QIITs) are generalized inductive types which allow sorts to be indexed over previously declared sorts, and allow usage of equality constructors. QIITs are especially useful for algebraic descriptions of type theories and constructive definitions of real, ordinal and surreal numbers. We develop new metatheory for large QIITs, large elimination, recursive equations and infinitary constructors. As in prior work, we describe QIITs using a type theory where each context represents a QIIT signature. However, in our case the theory of signatures can also describe its own signature, modulo universe sizes. We bootstrap the model theory of signatures using self-description and a Church-coded notion of signature, without using complicated raw syntax or assuming an existing internal QIIT of signatures. We give semantics to described QIITs by modeling each signature as a finitely complete CwF (category with families) of algebras. Compared to the case of finitary QIITs, we additionally need to show invariance under algebra isomorphisms in the semantics. We do this by modeling signature types as isofibrations. Finally, we show by a term model construction that every QIIT is constructible from the syntax of the theory of signatures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源