论文标题
关于$ \ partial的文件(v \ times \ mathbb {d})$
On filings of $\partial(V\times \mathbb{D})$
论文作者
论文摘要
我们表明,$ y:= \ partial(v \ times \ mathbb {d})$的任何符合性的非球形/calabi-yau填充$都消失了任何liouville域$ v $的符号共同体。特别是,我们在填充上没有拓扑要求,$ C_1(v)$可能是非零的。此外,我们表明,对于任何符合性的非球形/calabi-yau填充$ y $ $ y $,内部$ \ mathring {w} $对于$ v \ times \ times \ times \ times \ mathbb {d} $的内部都是差异的,如果$π_1(y)$ abelian和$ \ abelian和$ \ d $ v \ dim v \ ge 4 $。 $ w $是$ v \ times \ mathbb {d} $的差异化,如果此外,$π_1(y)$的Whitehead Group是微不足道的。
We show that any symplectically aspherical/Calabi-Yau filling of $Y:=\partial(V\times \mathbb{D})$ has vanishing symplectic cohomology for any Liouville domain $V$. In particular, we make no topological requirement on the filling and $c_1(V)$ can be nonzero. Moreover, we show that for any symplectically aspherical/Calabi-Yau filling $W$ of $Y$, the interior $\mathring{W}$ is diffeomorphic to the interior of $V\times \mathbb{D}$ if $π_1(Y)$ is abelian and $\dim V\ge 4$. And $W$ is diffeomorphic to $V\times \mathbb{D}$ if moreover the Whitehead group of $π_1(Y)$ is trivial.