论文标题

构建驾驶员汉密尔顿人,以实现线性约束的优化问题

Constructing Driver Hamiltonians for Optimization Problems with Linear Constraints

论文作者

Leipold, Hannes, Spedalieri, Federico M.

论文摘要

绝热量子计算领域的最新进展和量子退火器的紧密相关领域的目的是使用更先进和新颖的哈密顿表示来解决优化问题。这些进步之一是围绕着驾驶员汉密尔顿人的发展,这些驾驶员汉密尔顿人与优化问题的限制相关 - 允许另一种途径满足这些约束,而不是对每个途径施加惩罚条款。特别是,该方法能够使用比其他常见实践的量子设备上的几个实际问题来使用更稀疏的连接性。但是,设计成功通勤的驾驶员汉密尔顿人在很大程度上是基于针对特定问题的强烈直觉,并且没有简单的一般算法来生成它们以进行任意约束。在这项工作中,我们开发了一个简单而直观的代数框架,用于推理具有线性约束的汉密尔顿人的换向,这使我们能够将找到驱动程序的汉密尔顿人的复杂性分类为一组任意的约束,为NP完整。由于单一操作员是Hermitian操作员的指数,因此这些结果也可以应用于量子交替的操作员Ansatz(QAOA)框架中的混合器的构造。

Recent advances in the field of adiabatic quantum computing and the closely related field of quantum annealers has centered around using more advanced and novel Hamiltonian representations to solve optimization problems. One of these advances has centered around the development of driver Hamiltonians that commute with the constraints of an optimization problem - allowing for another avenue to satisfying those constraints instead of imposing penalty terms for each of them. In particular, the approach is able to use sparser connectivity to embed several practical problems on quantum devices than other common practices. However, designing the driver Hamiltonians that successfully commute with several constraints has largely been based on strong intuition for specific problems and with no simple general algorithm to generate them for arbitrary constraints. In this work, we develop a simple and intuitive algebraic framework for reasoning about the commutation of Hamiltonians with linear constraints - one that allows us to classify the complexity of finding a driver Hamiltonian for an arbitrary set of constraints as NP-Complete. Because unitary operators are exponentials of Hermitian operators, these results can also be applied to the construction of mixers in the Quantum Alternating Operator Ansatz (QAOA) framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源