论文标题
抛物线PDE中基质扩散系数的鉴定
Identification of matrix diffusion coefficients in a parabolic PDE
论文作者
论文摘要
我们考虑了降低抛物线PDE中矩阵形式的扩散系数的逆问题。在2006年,CAO和Pereverzev使用了\ textIt {天然线性化}方法来识别抛物线PDE中有价值的扩散系数。在本文中,我们利用该想法来识别矩阵有价值的系数,即使用弱解决方案的概念作为抛物线PDE,我们将非线性逆问题转换为解决依赖数据依赖数据的操作员方程的问题,该问题取决于数据。为了获得稳定的近似解决方案,采用了Tikhonov正则化,并得出了噪声数据下的错误估计。我们还显示了在数据上的某些假设下的逆问题解决方案的唯一性,并获得了所涉及的线性操作员伴随的明确表示。对于在有限维设置中获得的错误估计值,通过使用$ l^2(Ø)$的条目定义矩阵空间的正交投影,使用盖金方法,使用$ l^2(Ø)$的条目。为了选择正规化参数,我们使用了自适应技术,因此我们具有最佳的收敛速率。最后,对于放松的嘈杂数据,我们描述了一个获得平滑版本的过程,以获得误差估计。
We consider an inverse problem of identifying the diffusion coefficient in matrix form in a parabolic PDE. In 2006, Cao and Pereverzev, used a \textit{natural linearisation} method for identifying a scalar valued diffusion coefficient in a parabolic PDE. In this paper, we make use of that idea for identifying a matrix valued coefficient, namely, using the notion of a weak solution for a parabolic PDE, we transform our non-linear inverse problem into a problem of solving an ill-posed operator equation where the operator depending on the data is linear. For the purpose of obtaining stable approximate solutions, Tikhonov regularization is employed, and error estimates under noisy data are derived. We have also showed the uniqueness of the solution of the inverse problem under some assumptions on the data and obtained explicit representation of adjoint of the linear operator involved. For the obtaining error estimates in the finite dimensional setting, Galerkin method is used, by defining orthogonal projections on the space of matrices with entries from $L^2(Ø)$, by making use of standard orthogonal projections on $L^2(Ø)$. For choosing the regularizing parameter, we used the adaptive technique, so that we have an order optimal rate of convergence. Finally, for the relaxed noisy data, we described a procedure for obtaining a smoothed version so as to obtain the error estimates.