论文标题
阿贝里亚差异的模量空间的Chern类和Euler特征
The Chern classes and the Euler characteristic of the moduli spaces of abelian differentials
论文作者
论文摘要
对于Abelian差异的模量空间,Euler特性是最基本的内在拓扑不变的之一。我们为欧拉特征提供了一个公式,该公式依赖于多尺度差异的相交理论。这是紧凑型捆绑包的完整Chern多项式的公式的结果。 主要的新技术工具是欧拉(Euler)序列的欧拉(Euler)序列,用于盘环中阿贝尔(Abelian)差异和计算工具的模量空间的束束,例如正常捆绑包到边界除数。
For the moduli spaces of Abelian differentials, the Euler characteristic is one of the most basic intrinsic topological invariants. We give a formula for the Euler characteristic that relies on intersection theory on the smooth compactification by multi-scale differentials. It is a consequence of a formula for the full Chern polynomial of the cotangent bundle of the compactification. The main new technical tools are an Euler sequence for the cotangent bundle of the moduli space of Abelian differentials and computational tools in the Chow ring, such as normal bundles to boundary divisors.