论文标题
系外行星气氛的Arcis框架:建模哲学和检索
The ARCiS framework for Exoplanet Atmospheres: Modelling Philosophy and Retrieval
论文作者
论文摘要
目的:Arcis,是一种用于分析系外星的传播和发射光谱的新颖的代码。建模框架的目的是提供一个能够将观测值与系外星大气的物理模型联系起来的工具。方法:本文选择的建模理念是使用物理和化学模型来限制某些参数,同时保持我们的物理理解更加有限的部分。在完整的物理建模和完整的参数化之间,这种方法使我们能够使用我们了解的过程,并参数较少理解的过程。实施了一个贝叶斯检索框架,并将其应用于一组10个热木星的过境光谱。该代码包含化学和云形成,并可以选择自我一致的温度结构计算。结果:提出的代码非常快,灵活,可以用于检索和目标列表模拟,例如JWST或ESA ARIEL任务。我们提出了使用物理检索框架检索元素丰度比的结果,并将其与使用参数化检索设置获得的结果进行了比较。结论:我们得出结论,对于大多数考虑的目标,当前数据集的限制不足以可靠地固定在元素丰度比率上。我们发现不同的物理参数之间没有显着相关性。我们确认样品中的行星在光传输光谱中具有强斜率的行星是我们发现云形成最活跃的行星。最后,我们得出的结论是,使用Arcis,我们拥有一个计算有效的工具,可以在物理和化学模型的背景下分析系外行星观测。
Aims: ARCiS, a novel code for the analysis of exoplanet transmission and emission spectra is presented. The aim of the modelling framework is to provide a tool able to link observations to physical models of exoplanet atmospheres. Methods: The modelling philosophy chosen in this paper is to use physical and chemical models to constrain certain parameters while keeping free the parts where our physical understanding is still more limited. This approach, in between full physical modelling and full parameterisation, allows us to use the processes we understand well and parameterise those less understood. A Bayesian retrieval framework is implemented and applied to the transit spectra of a set of 10 hot Jupiters. The code contains chemistry and cloud formation and has the option for self consistent temperature structure computations. Results: The code presented is fast and flexible enough to be used for retrieval and for target list simulations for e.g. JWST or the ESA Ariel missions. We present results for the retrieval of elemental abundance ratios using the physical retrieval framework and compare this to results obtained using a parameterised retrieval setup. Conclusions: We conclude that for most of the targets considered the current dataset is not constraining enough to reliably pin down the elemental abundance ratios. We find no significant correlations between different physical parameters. We confirm that planets in our sample with a strong slope in the optical transmission spectrum are the planets where we find cloud formation to be most active. Finally, we conclude that with ARCiS we have a computationally efficient tool to analyse exoplanet observations in the context of physical and chemical models.