论文标题

用于脑MRI中无监督异常分割的尺度空间自动编码器

Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain MRI

论文作者

Baur, Christoph, Wiestler, Benedikt, Albarqouni, Shadi, Navab, Nassir

论文摘要

大脑病理的大小和形状可能差异很大,范围从几个像素(即MS病变)到大型占有空间的肿瘤。最近提出的基于自动编码器的大脑MRI中无监督异常分割的方法显示出了有希望的性能,但是在建模具有高忠诚度的分布方面面临困难,这对于准确描述特别小病变至关重要。在这里,类似于这些先前的作品,我们对健康脑MRI的分布进行了建模,以从错误的重建中定位病理。但是,为了在高分辨率下实现改善的重建保真度,我们学会使用拉普拉斯金字塔来压缩和重建健康脑MRI的不同频带。在一系列实验中,将我们的方法与三种不同大脑MR数据集的不同最新方法与MS病变和肿瘤进行了比较,我们显示出改善的异常分割性能,并在本机分辨率下获得更清晰的输入数据重建。 Laplacian金字塔的建模进一步可以在多个尺度上进行病变的描述和聚集,从而可以使用单个模型有效地应对不同的病理和病变大小。

Brain pathologies can vary greatly in size and shape, ranging from few pixels (i.e. MS lesions) to large, space-occupying tumors. Recently proposed Autoencoder-based methods for unsupervised anomaly segmentation in brain MRI have shown promising performance, but face difficulties in modeling distributions with high fidelity, which is crucial for accurate delineation of particularly small lesions. Here, similar to these previous works, we model the distribution of healthy brain MRI to localize pathologies from erroneous reconstructions. However, to achieve improved reconstruction fidelity at higher resolutions, we learn to compress and reconstruct different frequency bands of healthy brain MRI using the laplacian pyramid. In a range of experiments comparing our method to different State-of-the-Art approaches on three different brain MR datasets with MS lesions and tumors, we show improved anomaly segmentation performance and the general capability to obtain much more crisp reconstructions of input data at native resolution. The modeling of the laplacian pyramid further enables the delineation and aggregation of lesions at multiple scales, which allows to effectively cope with different pathologies and lesion sizes using a single model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源