论文标题

分层镍的电子掺杂$ _4 $ ni $ _3 $ o $ $ _ {10} $由铝替代:合并的实验和DFT研究

Electron doping of the layered nickelate La$_4$Ni$_3$O$_{10}$ by aluminum substitution: A combined experimental and DFT study

论文作者

Periyasamy, Manimuthu, Patra, Lokanath, Fjellvåg, Øystein S., Ravindran, Ponniah, Sørby, Magnus H., Kumar, Susmit, Sjåstad, Anja O., Fjellvåg, Helmer

论文摘要

La $ _4 $ ni $ _3 $ o $ $ _ {10} $的物理特性,带有2D状的Ruddlesden-Popper-Popper-type Crystal结构在很大程度上取决于温度和化学替代品。通过在NI点随机引入Al $^{3 +} $ ATOM($ X $),对两个非等效的Ni-Cations的平均氧化状态进行了调整,并采用低于LA $ _4 $ ni $ ni $ ni $ _3 $ _3 $ o $ o $ o $ _ {10} $的平均值低于+2.67的值。 la $ _4 $ ni $ _ {3-x} $ al $ _x $ o $ $ _ {10} $是$ x = 0.00 $至1.00的可靠解决方案,并通过柠檬酸方法制备。样品采用略微扭曲的单斜结构(p21/a),这是通过(117)反射的峰值扩大而证明的。我们报告了对少量均匀分布的Al-cations引起的电子特性的显着影响,在电阻率,磁化,衍射和DFT数据之间具有明显的对应关系。 DFT表明,在电子上,非等效的Ni原子之间没有显着差异,并且没有任何Ni $^{3+} $/Ni $^{2+} $收费订购的趋势。通过al-substitution的电子掺杂对电气和磁性具有深远的影响。在较高的ALVEL时,随着较高的AL级别的带隙的增加,电阻率从金属到半导体变化,与DFT的结果一致。 LA $ _4 $ ni $ _3 $ o $ $ _ {10} $报告的金属到金属过渡,通常被解释为电荷密度波,直到$ x = 0.15 $ al级。但是,电阻率的温度特性已经在非常低的AL级别(低于0.03)下变化。金属对金属向晶格的耦合通过晶胞尺寸的异常来证明。未通过粉末中子衍射检测到远距离磁性。引入非磁性al $^{3+} $更改Ni $^{3+} $/Ni $^{2+} $比率,并且很可能通过-ni-o-o-o-ni-fragments通过-ni-o-o-o-ni-fragments与Ferrymagnetic in fererMagagnence的出现一样,通过-ni-o-o-o-ni-fragments通过-ni-o-o-o-ni-fragments of Corner Corners共享。

The physical properties of La$_4$Ni$_3$O$_{10}$ with a 2D-like Ruddlesden-Popper-type crystal structure are extraordinarily dependent on temperature and chemical substitution. By introducing Al$^{3+}$ atoms ($x$) randomly at the Ni-sites, the average oxidation state for the two non-equivalent Ni-cations is tuned and adopt values below the average of +2.67 in La$_4$Ni$_3$O$_{10}$. La$_4$Ni$_{3-x}$Al$_x$O$_{10}$ is a solid solution for $x=0.00$ to 1.00, and are prepared by the citric acid method. The samples adopt a slightly distorted monoclinic structure (P21/a), evidenced by peak broadening of the (117) reflection. We report on a remarkable effect on the electronic properties induced by tiny amounts of homogeneously distributed Al-cations, with clear correspondence between resistivity, magnetization, diffraction, and DFT data. DFT shows that electronically there is no significant difference between the non-equivalent Ni atoms and no tendency towards any Ni$^{3+}$/Ni$^{2+}$ charge ordering. The electron doping via Al-substitution has a profound effect on electric and magnetic properties. The resistivity changes from metallic to semiconducting with increasing band-gap at higher Al-levels, consistent with results from DFT. The metal-to-metal transition reported for La$_4$Ni$_3$O$_{10}$, which is often interpreted as a charge density wave, is maintained until $x = 0.15$ Al-level. However, the temperature characteristics of the resistivity change already at very low Al-levels (below 0.03). A coupling of the metal-to-metal transition to the lattice is evidenced by an anomaly in the unit cell dimensions. No long-range magnetic order is detected by powder neutron diffraction. The introduction of the non-magnetic Al$^{3+}$ changes the Ni$^{3+}$/Ni$^{2+}$ ratio and is likely to block double-exchange pathways by means of -Ni-O-Al-O-Ni- fragments into the network of corner shared octahedra with the emergence of possible short-range order in ferromagnetic like islands.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源