论文标题

二维ABELS-GARCKE-GRün模型的良好性,用于双相流动的二维流量

Well-posedness of the two-dimensional Abels-Garcke-Grün model for two-phase flows with unmatched densities

论文作者

Giorgini, Andrea

论文摘要

我们研究了两种具有不同密度的粘性不可压缩液的混合物的ABELS-GARCKE-GRün(AGG)模型。 AGG模型由纳维尔 - stokes-cahn-hilliard系统组成,其特征在于(非恒定)浓度依赖性密度和由于界面扩散而引起的额外通量项。在本文中,我们在二维情况下解决了良好的问题。我们首先证明了一般界面域中局部强解决方案的存在。在空间周期环境中,我们表明,强大的解决方案在全球范围内存在。在这两种情况下,我们都证明了对强解决方案的初始数据的独特性和持续依赖性。

We study the Abels-Garcke-Grün (AGG) model for a mixture of two viscous incompressible fluids with different densities. The AGG model consists of a Navier-Stokes-Cahn-Hilliard system characterized by a (non-constant) concentration-dependent density and an additional flux term due to interface diffusion. In this paper we address the well-posedness problem in the two-dimensional case. We first prove the existence of local strong solutions in general bounded domains. In the space periodic setting we show that the strong solutions exist globally in time. In both cases we prove the uniqueness and the continuous dependence on the initial data of the strong solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源