论文标题

使用层次复发的神经网络对嵌入式设备上的轻巧在线降噪

Lightweight Online Noise Reduction on Embedded Devices using Hierarchical Recurrent Neural Networks

论文作者

Schröter, Hendrik, Rosenkranz, Tobias, Escalante-B., Alberto N., Zobel, Pascal, Maier, Andreas

论文摘要

基于深度学习的降噪算法已经证明了它们的成功,尤其是对于非平稳的噪音,这也可以将其用于借助助听器(例如)等嵌入式设备(HAS)。但是,目前使用最先进的方法是不可能的。他们要么需要大量参数和计算能力,因此仅使用现代CPU才能可行。或者它们不适合在线处理,这需要限制过滤器库和算法本身的限制。 在这项工作中,我们提出了一种基于面具的降噪方法。使用层次复发的神经网络,我们能够大幅度减少每层神经元的数量,同时通过分层连接包括时间上下文。这使我们能够将模型优化到最少数量的参数和浮点操作(FLOPS),同时与以前的工作相比保留降噪质量。我们最小的网络仅包含5K参数,这使得该算法适用于嵌入式设备。我们在EUROM和现实世界噪声数据库的混合物上评估了模型,并报告了关于看不见的噪声的客观指标。

Deep-learning based noise reduction algorithms have proven their success especially for non-stationary noises, which makes it desirable to also use them for embedded devices like hearing aids (HAs). This, however, is currently not possible with state-of-the-art methods. They either require a lot of parameters and computational power and thus are only feasible using modern CPUs. Or they are not suitable for online processing, which requires constraints like low-latency by the filter bank and the algorithm itself. In this work, we propose a mask-based noise reduction approach. Using hierarchical recurrent neural networks, we are able to drastically reduce the number of neurons per layer while including temporal context via hierarchical connections. This allows us to optimize our model towards a minimum number of parameters and floating-point operations (FLOPs), while preserving noise reduction quality compared to previous work. Our smallest network contains only 5k parameters, which makes this algorithm applicable on embedded devices. We evaluate our model on a mixture of EUROM and a real-world noise database and report objective metrics on unseen noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源