论文标题

通过基于相互信息最大化的融合的多级不确定性校准

Multi-Class Uncertainty Calibration via Mutual Information Maximization-based Binning

论文作者

Patel, Kanil, Beluch, William, Yang, Bin, Pfeiffer, Michael, Zhang, Dan

论文摘要

事后多级校准是提供深度神经网络预测高质量置信度估计的常见方法。最近的工作表明,广泛使用的缩放方法低估了其校准误差,而替代直方图(HB)方法通常无法保留分类精度。当课程的先前概率较小时,HB也会在转换为K One-VS-Rest级别校准问题后面临严重样本信息的问题。本文的目的是解决已确定的HB问题,以便仅使用一个小的保留校准数据集提供校准的置信度估算,以进行bin优化,同时保留多级排名准确性。从信息理论的角度来看,我们得出了i-max概念的构造,该概念最大化了标签和量化逻辑之间的相互信息。这个概念减轻了由于有损量化而导致的排名绩效的潜在损失,并且通过解开垃圾箱边缘和代表的优化,可以同时改善排名和校准性能。为了提高样品效率和小型校准集的估计,我们提出了共享的类别(SCW)校准策略,在类似类(例如,与类似的类先验者)之间共享一个校准器,以便可以将其类别校准问题的训练集合并以训练单个校准器。 SCW和I-Max Binning的组合使用较小的校准集(例如,Imagenet的1K样本),在不同基准数据集和模型的各种评估指标上的最先进方法的状态优于其他评估指标。

Post-hoc multi-class calibration is a common approach for providing high-quality confidence estimates of deep neural network predictions. Recent work has shown that widely used scaling methods underestimate their calibration error, while alternative Histogram Binning (HB) methods often fail to preserve classification accuracy. When classes have small prior probabilities, HB also faces the issue of severe sample-inefficiency after the conversion into K one-vs-rest class-wise calibration problems. The goal of this paper is to resolve the identified issues of HB in order to provide calibrated confidence estimates using only a small holdout calibration dataset for bin optimization while preserving multi-class ranking accuracy. From an information-theoretic perspective, we derive the I-Max concept for binning, which maximizes the mutual information between labels and quantized logits. This concept mitigates potential loss in ranking performance due to lossy quantization, and by disentangling the optimization of bin edges and representatives allows simultaneous improvement of ranking and calibration performance. To improve the sample efficiency and estimates from a small calibration set, we propose a shared class-wise (sCW) calibration strategy, sharing one calibrator among similar classes (e.g., with similar class priors) so that the training sets of their class-wise calibration problems can be merged to train the single calibrator. The combination of sCW and I-Max binning outperforms the state of the art calibration methods on various evaluation metrics across different benchmark datasets and models, using a small calibration set (e.g., 1k samples for ImageNet).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源