论文标题
重新思考基于分布匹配的域适应
Rethinking Distributional Matching Based Domain Adaptation
论文作者
论文摘要
域自适应(DA)是一种在标记的源域上训练的预测模型的技术,转移到了未标记的目标域,其核心难度解决了域之间的分布变化。当前,大多数流行的DA算法基于分销匹配(DM)。但是,实际上,现实的域转移(RDS)可能违反其基本假设,因此这些方法将失败。在本文中,为了设计强有力的DA算法,我们首先系统地分析了基于DM的方法的局限性,然后构建具有更真实的域移位的新基准测试,以评估良好的DM方法。我们进一步提出了InstapBM,这是一种基于实例的预测行为匹配方法,可鲁棒性DA。 Extensive experiments on both conventional and RDS benchmarks demonstrate both the limitations of DM methods and the efficacy of InstaPBM: Compared with the best baselines, InstaPBM improves the classification accuracy respectively by $4.5\%$, $3.9\%$ on Digits5, VisDA2017, and $2.2\%$, $2.9\%$, $3.6\%$ on domainnet-dlds,domainnet-ilds,id-two。我们希望我们的直观而有效的方法将成为一个有用的新方向,并在实际情况下提高DA的鲁棒性。代码将在匿名链接上提供:https://github.com/pikachusocute/instapbm-robustda。
Domain adaptation (DA) is a technique that transfers predictive models trained on a labeled source domain to an unlabeled target domain, with the core difficulty of resolving distributional shift between domains. Currently, most popular DA algorithms are based on distributional matching (DM). However in practice, realistic domain shifts (RDS) may violate their basic assumptions and as a result these methods will fail. In this paper, in order to devise robust DA algorithms, we first systematically analyze the limitations of DM based methods, and then build new benchmarks with more realistic domain shifts to evaluate the well-accepted DM methods. We further propose InstaPBM, a novel Instance-based Predictive Behavior Matching method for robust DA. Extensive experiments on both conventional and RDS benchmarks demonstrate both the limitations of DM methods and the efficacy of InstaPBM: Compared with the best baselines, InstaPBM improves the classification accuracy respectively by $4.5\%$, $3.9\%$ on Digits5, VisDA2017, and $2.2\%$, $2.9\%$, $3.6\%$ on DomainNet-LDS, DomainNet-ILDS, ID-TwO. We hope our intuitive yet effective method will serve as a useful new direction and increase the robustness of DA in real scenarios. Code will be available at anonymous link: https://github.com/pikachusocute/InstaPBM-RobustDA.