论文标题
协作边界感知的上下文编码网络以进行错误映射预测
Collaborative Boundary-aware Context Encoding Networks for Error Map Prediction
论文作者
论文摘要
医疗图像分割通常被视为临床情况和医学成像研究中最重要的中间步骤之一。因此,准确评估自动产生预测的分割质量对于确保计算机辅助诊断结果(CAD)的可靠性至关重要。许多研究人员应用神经网络来训练分割质量回归模型,以估计新数据队列的分割质量,而无需标记地面真相。最近,提出了一个新颖的想法,即改变分割质量评估(SQA)问题,以分割的形式在像素错误映射图中预测任务。但是,在医学图像中简单地应用香草分割结构无法检测具有复杂解剖结构的自动生成掩模的一些小而薄的误差区域。在本文中,我们提出了用于错误预测任务的称为AEP-NET的网络编码网络。具体而言,我们提出了一个协作特征转换分支,以在图像和掩码之间更好地融合以及错误区域的精确定位。此外,我们提出了一个编码模块的上下文,以利用来自错误映射的全局预测变量来增强特征表示并正规化网络。我们在IBSR V2.0数据集和ACDC数据集上执行实验。对于错误预测任务,AEP-NET的平均DSC为0.8358,0.8164的平均DSC为0.8164,并且在实际分割准确性和从IBSR V2.0数据集上预测的错误映射中推断出的预测准确性之间的Pearson相关系数高为0.9873,这证实了我们AEP-NET的效率。
Medical image segmentation is usually regarded as one of the most important intermediate steps in clinical situations and medical imaging research. Thus, accurately assessing the segmentation quality of the automatically generated predictions is essential for guaranteeing the reliability of the results of the computer-assisted diagnosis (CAD). Many researchers apply neural networks to train segmentation quality regression models to estimate the segmentation quality of a new data cohort without labeled ground truth. Recently, a novel idea is proposed that transforming the segmentation quality assessment (SQA) problem intothe pixel-wise error map prediction task in the form of segmentation. However, the simple application of vanilla segmentation structures in medical image fails to detect some small and thin error regions of the auto-generated masks with complex anatomical structures. In this paper, we propose collaborative boundaryaware context encoding networks called AEP-Net for error prediction task. Specifically, we propose a collaborative feature transformation branch for better feature fusion between images and masks, and precise localization of error regions. Further, we propose a context encoding module to utilize the global predictor from the error map to enhance the feature representation and regularize the networks. We perform experiments on IBSR v2.0 dataset and ACDC dataset. The AEP-Net achieves an average DSC of 0.8358, 0.8164 for error prediction task,and shows a high Pearson correlation coefficient of 0.9873 between the actual segmentation accuracy and the predicted accuracy inferred from the predicted error map on IBSR v2.0 dataset, which verifies the efficacy of our AEP-Net.