论文标题
块状区域中冠层磁场的分层。从空间规范化的弱场近似法受到约束
Stratification of canopy magnetic fields in a plage region. Constraints from a spatially-regularized weak-field approximation method
论文作者
论文摘要
磁场在染色体加热问题中的作用仍然极大地不受限制。来自数值模型的大多数理论预测都依赖于磁性构型,场强和连接性,其细节尚未通过观察性研究得到很好的确定。一般而言,对材料中的色球磁场的高分辨率研究通常是非常稀缺或不存在的。我们的目的是研究材料区域中磁场矢量的分层。我们使用在瑞典1-m太阳能望远镜上获得的高空间分辨率全孔观测值,毫克I $λ$ 5173,NA I $λ$ 5896和CA II $λ$ 8542行。我们已经基于空间正则化的概念开发了一种空间规范化的弱场近似(WFA)方法。此方法允许快速计算扩展视场的磁场图。已使用现实的3D磁水动力学模拟的快照评估了这项新技术的保真度。我们得出了从光球到板区域的色球球体的磁场视野组件的深度分层。磁场集中在光球中的晶间泳道中,并水平朝着色球层膨胀,填充了所有空间并形成冠层。我们的结果表明,该冠层的下边界必须位于距离光球约400-600公里的位置。下色球($ z \ of760 $ km)中平均冠层总磁场强度为658g。在$ z = 1160 $ km时,我们估计$ <b_ \ parallel> \ 417 $ g。我们建议对WFA进行修改,以改善其适用于较差的信号到noise率的数据的适用性。这些方法提供了一种研究多层磁场观测的快速可靠方法,而没有其他反演方法固有的许多困难。
The role of magnetic fields in the chromospheric heating problem remains greatly unconstrained. Most theoretical predictions from numerical models rely on a magnetic configuration, field strength and connectivity whose details have not been well established with observational studies. High-resolution studies of chromospheric magnetic fields in plage are very scarce or non-existent in general. Our aim is to study the stratification of the magnetic field vector in plage regions. We use high-spatial resolution full-Stokes observations acquired with CRISP instrument at the Swedish 1-m Solar Telescope in the Mg I $λ$5173, Na I $λ$5896 and Ca II $λ$8542 lines. We have developed a spatially-regularized weak-field approximation (WFA) method based on the idea of spatial regularization. This method allows for a fast computation of magnetic field maps for an extended field of view. The fidelity of this new technique has been assessed using a snapshot from a realistic 3D magnetohydrodynamics simulation. We have derived the depth-stratification of the line-of-sight component of the magnetic field from the photosphere to the chromosphere in a plage region. The magnetic fields are concentrated in the intergranular lanes in the photosphere and expand horizontally toward the chromosphere, filling all the space and forming a canopy. Our results suggest that the lower boundary of this canopy must be located around 400-600 km from the photosphere. The mean canopy total magnetic field strength in the lower chromosphere ($z\approx760$ km) is 658 G. At $z=1160$ km we estimate $<B_\parallel>\approx 417$ G. We propose a modification to the WFA that improves its applicability to data with worse signal-to-noise ratio. These methods provide a quick and reliable way of studying multi-layer magnetic field observations without the many difficulties inherent to other inversion methods.