论文标题

在多个对象跟踪中使用应用程序的脱节路径

Lifted Disjoint Paths with Application in Multiple Object Tracking

论文作者

Hornakova, Andrea, Henschel, Roberto, Rosenhahn, Bodo, Swoboda, Paul

论文摘要

我们提出了一个分离路径问题的扩展名,其中引入了其他\ emph {升起}边缘以提供路径连接性先验。我们称结果优化问题为提升的不相交路径问题。我们表明,由于整数多商品流量和3-SAT的降低,这个问题是NP-HARD。为了实现实际的全球优化,我们提出了几类线性不平等的类别,以产生高质量的LP - 放射率。此外,我们提出了有效的切割平面算法,以分离提出的线性不平等。提起的脱节路径问题是用于多个对象跟踪的自然模型,并允许用于远程时间相互作用的优雅数学公式。提起的边缘有助于防止ID开关并重新识别人员。我们提起的脱节路径跟踪器就输入检测实现了几乎最佳的分配。结果,它以MOT挑战的所有三个主要基准领先,在最先进的情况下有了显着改善。

We present an extension to the disjoint paths problem in which additional \emph{lifted} edges are introduced to provide path connectivity priors. We call the resulting optimization problem the lifted disjoint paths problem. We show that this problem is NP-hard by reduction from integer multicommodity flow and 3-SAT. To enable practical global optimization, we propose several classes of linear inequalities that produce a high-quality LP-relaxation. Additionally, we propose efficient cutting plane algorithms for separating the proposed linear inequalities. The lifted disjoint path problem is a natural model for multiple object tracking and allows an elegant mathematical formulation for long range temporal interactions. Lifted edges help to prevent id switches and to re-identify persons. Our lifted disjoint paths tracker achieves nearly optimal assignments with respect to input detections. As a consequence, it leads on all three main benchmarks of the MOT challenge, improving significantly over state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源