论文标题

Lee-Yang Zeros和在有限度图上的铁磁ising模型的复杂性

Lee-Yang zeros and the complexity of the ferromagnetic Ising model on bounded-degree graphs

论文作者

Buys, Pjotr, Galanis, Andreas, Patel, Viresh, Regts, Guus

论文摘要

我们研究了与复杂平面中单位圆的外部磁场参数$λ$近似于近似于铁磁ISING模型的分区函数的计算复杂性。 ISING模型的复杂值参数与统计物理学中的量子电路计算和相变有关,但在所有$ | |λ| \ neq 1 $ by Liu,Sinclair和Srivastava的最新确定性近似方案中也是关键。 Here, we focus on the unresolved complexity picture on the unit circle, and on the tantalising question of what happens around $λ=1$, where on one hand the classical algorithm of Jerrum and Sinclair gives a randomised approximation scheme on the real axis suggesting tractability, and on the other hand the presence of Lee-Yang zeros alludes to computational hardness. 我们的主要结果在$λ= 1 $的点上建立了急剧的计算过渡,更普遍地在整个单元圆圈上。对于整数$δ\ geq 3 $和边缘交互参数$ b \ in(0,1)$,我们显示#p-hardness在lee-yang zeros的弧线上近似$δ$的图表上的分区函数近似于最大程度$δ$。当$ |λ| \ neq 1 $或$λ$位于单位圆的$ 1 $左右时,该结果与已知的近似算法形成鲜明对比。因此,我们的工作提供了Lee-Yang Zeros的存在/不存在与有效近似界图上分区函数的障碍之间的直接连接。

We study the computational complexity of approximating the partition function of the ferromagnetic Ising model with the external field parameter $λ$ on the unit circle in the complex plane. Complex-valued parameters for the Ising model are relevant for quantum circuit computations and phase transitions in statistical physics, but have also been key in the recent deterministic approximation scheme for all $|λ|\neq 1$ by Liu, Sinclair, and Srivastava. Here, we focus on the unresolved complexity picture on the unit circle, and on the tantalising question of what happens around $λ=1$, where on one hand the classical algorithm of Jerrum and Sinclair gives a randomised approximation scheme on the real axis suggesting tractability, and on the other hand the presence of Lee-Yang zeros alludes to computational hardness. Our main result establishes a sharp computational transition at the point $λ=1$, and more generally on the entire unit circle. For an integer $Δ\geq 3$ and edge interaction parameter $b\in (0,1)$ we show #P-hardness for approximating the partition function on graphs of maximum degree $Δ$ on the arc of the unit circle where the Lee-Yang zeros are dense. This result contrasts with known approximation algorithms when $|λ|\neq 1$ or when $λ$ is in the complementary arc around $1$ of the unit circle. Our work thus gives a direct connection between the presence/absence of Lee-Yang zeros and the tractability of efficiently approximating the partition function on bounded-degree graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源