论文标题
SAHI,Stokman和Venkateswaran的麦克唐纳多项式概括的组合公式
A combinatorial formula for Sahi, Stokman, and Venkateswaran's generalization of Macdonald polynomials
论文作者
论文摘要
Sahi, Stokman, and Venkateswaran have constructed, for each positive integer $n$, a family of Laurent polynomials depending on parameters $q$ and $k$ (in addition to $\lfloor n/2\rfloor$ "metaplectic parameters"), such that the $n=1$ case recovers the nonsymmetric Macdonald polynomials and the $ q \ rightArrow \ infty $限制产生具有任意高斯总和参数的Metapclect Iwahori-Whittaker功能。在本文中,我们研究了这些新的多项式,在$ gl_r $的情况下,我们称为SSV多项式。我们应用RAM和YIP的结果,以根据Alcove步行为SSV多项式提供组合公式。该公式立即表明,SSV多项式相对于Bruhat Order的版本满足了三角形的特性,这又提供了独立的证据,即SSV多项式是Laurent多项式空间的基础。 The result is also used to show that the SSV polynomials have \emph{fewer} terms than the corresponding Macdonald polynomials.我们还记录了一个壁co的步行公式,用于缩小的麦克唐纳多项式的自然概括。然后,我们构建了SSV多项式的对称变体:相对于Chinta-Gunnells Weyl群的共轭物是对称的,当$ n = 1 $时,它们是对称的MacDonald多项式。我们也获得了对称多项式的壁co行走公式。最后,我们计算$ q \ rightarrow 0 $和$ q \ rightarrow \ rightarrow \ infty $ limits的ssv多项式限制,并观察到我们的组合公式可以分别以alcove walk的速度编写,而只有正折叠和负褶皱。在这两个$ Q $限制案例中,我们还观察到系数的积极性结果。
Sahi, Stokman, and Venkateswaran have constructed, for each positive integer $n$, a family of Laurent polynomials depending on parameters $q$ and $k$ (in addition to $\lfloor n/2\rfloor$ "metaplectic parameters"), such that the $n=1$ case recovers the nonsymmetric Macdonald polynomials and the $q\rightarrow\infty$ limit yields metaplectic Iwahori-Whittaker functions with arbitrary Gauss sum parameters. In this paper, we study these new polynomials, which we call SSV polynomials, in the case of $GL_r$. We apply a result of Ram and Yip in order to give a combinatorial formula for the SSV polynomials in terms of alcove walks. The formula immediately shows that the SSV polynomials satisfy a triangularity property with respect to a version of the Bruhat order, which in turn gives an independent proof that the SSV polynomials are a basis for the space of Laurent polynomials. The result is also used to show that the SSV polynomials have \emph{fewer} terms than the corresponding Macdonald polynomials. We also record an alcove walk formula for the natural generalization of the permuted basement Macdonald polynomials. We then construct a symmetrized variant of the SSV polynomials: these are symmetric with respect to a conjugate of the Chinta-Gunnells Weyl group action and reduce to symmetric Macdonald polynomials when $n=1$. We obtain an alcove walk formula for the symmetrized polynomials as well. Finally, we calculate the $q\rightarrow 0$ and $q\rightarrow \infty$ limits of the SSV polynomials and observe that our combinatorial formula can be written in terms of alcove walks with only positive and negative folds respectively. In both of these $q$-limit cases, we also observe a positivity result for the coefficients.