论文标题

利用深度学习技术进行有效的零日攻击检测

Utilising Deep Learning Techniques for Effective Zero-Day Attack Detection

论文作者

Hindy, Hanan, Atkinson, Robert, Tachtatzis, Christos, Colin, Jean-Noël, Bayne, Ethan, Bellekens, Xavier

论文摘要

机器学习(ML)和深度学习(DL)已用于构建入侵检测系统(IDS)。对依赖历史攻击签名数据库的IDS解决方案的数量和庞大的新网络攻击数量的增加构成了巨大的挑战。因此,能够标记零日攻击的强大IDS的工业吸引力正在增长。当前基于离群值的零日检测研究遭受了高的假阴性率,因此限制了它们的实际使用和性能。本文提出了用于检测零日攻击的自动编码器实现。目的是建立一个具有高召回率的IDS模型,同时将失误率(假阴性)保持在可接受的最低限度。两个众所周知的ID数据集用于评估-CICIDS2017和NSL-KDD。为了证明我们的模型的功效,我们将其结果与单级支持向量机(SVM)进行了比较。当零日攻击与正常行为不同时,手稿强调了一级SVM的性能。所提出的模型从编码编码功能的自动编码器中受益匪浅。结果表明,自动编码器非常适合检测复杂的零日攻击。结果表明,NSL-KDD数据集的零日检测准确性为[89-99%],而CICIDS2017数据集则显示了[89-99%]。最后,该论文概述了召回和后果之间观察到的权衡。

Machine Learning (ML) and Deep Learning (DL) have been used for building Intrusion Detection Systems (IDS). The increase in both the number and sheer variety of new cyber-attacks poses a tremendous challenge for IDS solutions that rely on a database of historical attack signatures. Therefore, the industrial pull for robust IDSs that are capable of flagging zero-day attacks is growing. Current outlier-based zero-day detection research suffers from high false-negative rates, thus limiting their practical use and performance. This paper proposes an autoencoder implementation for detecting zero-day attacks. The aim is to build an IDS model with high recall while keeping the miss rate (false-negatives) to an acceptable minimum. Two well-known IDS datasets are used for evaluation-CICIDS2017 and NSL-KDD. In order to demonstrate the efficacy of our model, we compare its results against a One-Class Support Vector Machine (SVM). The manuscript highlights the performance of a One-Class SVM when zero-day attacks are distinctive from normal behaviour. The proposed model benefits greatly from autoencoders encoding-decoding capabilities. The results show that autoencoders are well-suited at detecting complex zero-day attacks. The results demonstrate a zero-day detection accuracy of [89-99%] for the NSL-KDD dataset and [75-98%] for the CICIDS2017 dataset. Finally, the paper outlines the observed trade-off between recall and fallout.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源