论文标题
Lei-lin空间中2D MHD方程的强溶液的全球良好解决方案
The global well-posedness of strong solutions to 2D MHD equations in Lei-Lin space
论文作者
论文摘要
在本文中,我们研究了Lei-Lin空间中2D不可压缩的磁性流动力方程的库奇问题。 Lei-lin空间中强大解决方案的全局良好性$χ^{ - 1}(\ Mathbb {r}^2)$在$χ^{ - 1}中使用任何初始数据(\ Mathbb {r}^2)\ Cap l^2(\ Mathbb {r}^2(\ Mathbb {r}^2)已建立。此外,证明了强大解决方案在$χ^{ - 1}中的独特性(\ mathbb {r}^2)$和$ l^2中的leray-hopf弱解决方案(\ m athbb {r}^2)$。
In this paper, we study the Cauchy problem of the 2D incompressible magnetohydrodynamic equations in Lei-Lin space. The global well-posedness of a strong solution in the Lei-Lin space $χ^{-1}(\mathbb{R}^2)$ with any initial data in $χ^{-1}(\mathbb{R}^2)\cap L^2(\mathbb{R}^2)$ is established. Furthermore, the uniqueness of the strong solution in $χ^{-1}(\mathbb{R}^2)$ and the Leray-Hopf weak solution in $L^2(\mathbb{R}^2)$ is proved.