论文标题

u(1)在5D理论,希格斯分支和几何形状中的作用

The role of U(1)'s in 5d theories, Higgs branches, and geometry

论文作者

Collinucci, Andrés, Valandro, Roberto

论文摘要

我们探索了五维$ \ MATHCAL {N} = 1 $ Quiver仪表理论的HIGGS分支,该分支是根据M-Beyor的calabi-yau范围的有限耦合理论,被描述为$ \ MATHBB {C}^\ ast $ - 纤维,而不是本地K3的K3。通过正确计算奇点的局部变形,我们发现结果与统一的结果兼容,而不是特殊的统一量表组。我们通过与D6-branes的本地K3上的IIA对IIA进行双重化来解释这些结果,并与具有5型凝固的IIB进行了串联。最后,我们发现,通过压实$ \ mathbb {c}^\ ast $ - 纤维到托里(Tori),众所周知的stückelberg机制消除了阿贝尔因素,并以一种非常有趣的方式提供了缺失的Higgs分支模式。这也是从双IIA和IIB观点来解释的。

We explore the Higgs branches of five-dimensional $\mathcal{N}=1$ quiver gauge theories at finite coupling from the paradigm of M-theory on local Calabi-Yau threefolds described as $\mathbb{C}^\ast$-fibrations over local K3's. By properly counting local deformations of singularities, we find results compatible with unitary as opposed to special unitary gauge groups. We interpret these results by dualizing to both IIA on local K3's with D6-branes, and to IIB with 5-branes. Finally, we find that, by compactifying the $\mathbb{C}^\ast$-fibers to tori, a well-known Stückelberg mechanism eliminates Abelian factors, and provides missing Higgs branch moduli in a very interesting way. This is also explained from the dual IIA and IIB viewpoints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源