论文标题

通过缺陷工程和化学掺杂来调整固有抗铁磁拓扑拓扑拓扑的fermi水平MNBI2TE4和MNBI4TE7

Tuning Fermi Levels in Intrinsic Antiferromagnetic Topological Insulators MnBi2Te4 and MnBi4Te7 by Defect Engineering and Chemical Doping

论文作者

Du, Mao-Hua, Yan, Jiaqiang, Cooper, Valentino R., Eisenbach, Markus

论文摘要

MNBI2TE4和MNBI4TE7是固有的抗铁磁拓扑绝缘子,为实现外来拓扑量子态提供了有前途的材料平台。然而,这些材料中的固有缺陷高密度不仅会导致块状金属电导率,从而阻止了表面状态下量子运输的测量,而且还可能影响磁性和拓扑特性。在本文中,我们通过密度功能理论计算表明,由内部异质结构诱导的菌株促进了MNBI2TE4中的大小不匹配的反异岩缺陷BIMN的形成。在MNBI4TE7中,这种菌株进一步增强,从而产生更高的BIMN密度。内在的BIMN供体的丰度导致在贫穷生长条件下脱位N型电导率。我们的计算表明,在富裕条件下的增长可以降低费米水平,这得到了我们的运输测量值的支持。我们进一步表明,内部应变还可以通过大小不一致的替代剂量受体来有效地掺杂,从而可以补偿BIMN供体并降低费米水平。 Na掺杂也可能在MNBI2TE4中的Te-Poor限制下将Fermi水平固定在散装带隙内。此外,讨论了MNSB2TE4中的简便缺陷形成及其在MNBI2TE4中的SB掺杂以及MNBI4TE7中的缺陷分离中的含义。本文提出的缺陷工程和掺杂策略将刺激进一步的研究,以改善MNBI2TE4,MNBI4TE7和相关化合物中的磁性和拓扑特性。

MnBi2Te4 and MnBi4Te7 are intrinsic antiferromagnetic topological insulators, offering a promising materials platform for realizing exotic topological quantum states. However, high densities of intrinsic defects in these materials not only cause bulk metallic conductivity, preventing the measurement of quantum transport in surface states, but may also affect magnetism and topological properties. In this paper, we show by density functional theory calculations that the strain induced by the internal heterostructure promotes the formation of large-size-mismatched antisite defect BiMn in MnBi2Te4; such strain is further enhanced in MnBi4Te7, giving rise to even higher BiMn density. The abundance of intrinsic BiMn donors results in degenerate n-type conductivity under the Te-poor growth condition. Our calculations suggest that growths in a Te-rich condition can lower the Fermi level, which is supported by our transport measurements. We further show that the internal strain can also enable efficient doping by large-size-mismatched substitutional NaMn acceptors, which can compensate BiMn donors and lower the Fermi level. Na doping may pin the Fermi level inside the bulk band gap even at the Te-poor limit in MnBi2Te4. Furthermore, facile defect formation in MnSb2Te4 and its implication in Sb doping in MnBi2Te4 as well as the defect segregation in MnBi4Te7 are discussed. The defect engineering and doping strategies proposed in this paper will stimulate further studies for improving synthesis and for manipulating magnetic and topological properties in MnBi2Te4, MnBi4Te7, and related compounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源