论文标题
DNF-NET:网格denoising的深层正常过滤网络
DNF-Net: a Deep Normal Filtering Network for Mesh Denoising
论文作者
论文摘要
本文提出了一个深层正常的过滤网络,称为dnf-net,用于网格。为了更好地捕获本地几何形状,我们的网络通过从网格中提取的局部贴片来处理网格。总体而言,DNF-NET是一个端到端网络,它将构面的贴片作为输入,并直接输出贴片的相应的换式构面。通过这种方式,我们可以通过特征保存重建来自DeNo的正态的几何形状。除了整体网络体系结构外,我们的贡献还包括一个新型的多尺度功能嵌入单元,消除噪声的残留学习策略以及深度监督的关节损失函数。与最近的数据驱动的网格降级作品相比,DNF-NET不需要手动输入来提取功能,并更好地利用培训数据来增强其脱氧性能。最后,我们提出了全面的实验,以评估我们的方法并证明其优于合成和实扫描的网格的最优势。
This paper presents a deep normal filtering network, called DNF-Net, for mesh denoising. To better capture local geometry, our network processes the mesh in terms of local patches extracted from the mesh. Overall, DNF-Net is an end-to-end network that takes patches of facet normals as inputs and directly outputs the corresponding denoised facet normals of the patches. In this way, we can reconstruct the geometry from the denoised normals with feature preservation. Besides the overall network architecture, our contributions include a novel multi-scale feature embedding unit, a residual learning strategy to remove noise, and a deeply-supervised joint loss function. Compared with the recent data-driven works on mesh denoising, DNF-Net does not require manual input to extract features and better utilizes the training data to enhance its denoising performance. Finally, we present comprehensive experiments to evaluate our method and demonstrate its superiority over the state of the art on both synthetic and real-scanned meshes.