论文标题

DEEPACC:使用与先验知识融合的深度学习框架基于中期图像自动染色体分类

DeepACC:Automate Chromosome Classification based on Metaphase Images using Deep Learning Framework Fused with Prior Knowledge

论文作者

Luo, Chunlong, Yu, Tianqi, Luo, Yufan, Wang, Manqing, Yu, Fuhai, Li, Yinhao, Tian, Chan, Qiao, Jie, Xiao, Li

论文摘要

染色体分类是核分型中的一项重要但艰巨的任务。先前的方法仅对手动分割的单染色体进行分类,这远非临床实践。在这项工作中,我们提出了一种基于检测的方法DEEPACC,以基于整个中期图像同时定位和精细地对染色体进行分类。首先,我们引入了添加性角度损失,以增强模型的判别能力。为了减轻批处理效应,我们通过暹罗网络将每个类案例的决策边界转换为逐案的决策边界,该网络充分利用了染色体通常成对出现的先验知识。此外,我们将临床上七个小组标准作为先验知识,并设计了额外的组内陷入困境,以进一步降低阶层间的相似性。收集并标记了来自临床实验室的3390个中期图像以评估性能。结果表明,与最先进的基线相比,新设计带来了令人鼓舞的性能增长。

Chromosome classification is an important but difficult and tedious task in karyotyping. Previous methods only classify manually segmented single chromosome, which is far from clinical practice. In this work, we propose a detection based method, DeepACC, to locate and fine classify chromosomes simultaneously based on the whole metaphase image. We firstly introduce the Additive Angular Margin Loss to enhance the discriminative power of model. To alleviate batch effects, we transform decision boundary of each class case-by-case through a siamese network which make full use of prior knowledges that chromosomes usually appear in pairs. Furthermore, we take the clinically seven group criterion as a prior knowledge and design an additional Group Inner-Adjacency Loss to further reduce inter-class similarities. 3390 metaphase images from clinical laboratory are collected and labelled to evaluate the performance. Results show that the new design brings encouraging performance gains comparing to the state-of-the-art baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源