论文标题
各向异性晶粒边界迁移的新水平设定元素公式
A new level set-finite element formulation for anisotropic grain boundary migration
论文作者
论文摘要
多晶的晶粒生长是金属成分热处理期间发生的主要机制之一。这项工作处理各向异性谷物生长问题的一个方面。通过应用热力学和力学的第一原理,表达了具有倾斜度依赖性能量密度的迁移晶界速度场的表达。该结果用于生成作者知识的第一个结果,即分析解决方案(对于形式和动力学)来生成各向异性边界配置。为了探索所提出的级别设置有限元数值模型在各向异性设置中的收敛属性,进行了模拟。为了显示新公式的附加值,研究了要确定的方法的收敛,另一种使用更通用的晶界能量密度的构型。
Grain growth in polycrystals is one of the principal mechanisms that take place during heat treatment of metallic components. This work treats an aspect of the anisotropic grain growth problem. By applying the first principles of thermodynamics and mechanics, an expression for the velocity field of a migrating grain boundary with an inclination dependent energy density is expressed. This result is used to generate the first, to the authors' knowledge, analytical solution (for both the form and kinetics) to an anisotropic boundary configuration. This new benchmark is simulated in order to explore the convergence properties of the proposed level set finite element numerical model in an anisotropic setting. Convergence of the method being determined, another configuration, using a more general grain boundary energy density, is investigated in order to show the added value of the new formulation.