论文标题

关于$ \ Mathcal {r} $的同构和$ \ Mathcal {l} $ - 有限的倒数对称半群的花圈产品的横截面

On isomorphisms of $\mathcal{R}$- and $\mathcal{L}$-cross-sections of wreath products of finite inverse symmetric semigroups

论文作者

Kochubinska, Eugenia

论文摘要

我们对$ \ MATHCAL {r} $ - 和$ \ MATHCAL {l} $ - 有限的逆对称semogroups $ \ mathcal {is} _m \ wr_p \ mathcal {iS} is} _n $ to isomorphism的花环的横截面。我们表明,$ \ MATHCAL {r} $($ \ MATHCAL {l} $ - )$ \ MATHCAL {IS} _M \ WR_P \ MATHCAL {IS} _n $的每一个同构的跨区。作为辅助结果,我们知道$ \ Mathcal {r} $ - ($ \ Mathcal {l} $ - )$ \ MATHCAL {is} _n $的每个同构也是一种共饮。我们还计算了$ \ Mathcal {is} _M \ wr_p \ Mathcal {is} _n $的非同态$ \ MATHCAL {r} $ - ($ \ MATHCAL {L} $ - )的跨区域的数量。

We classify $\mathcal{R}$- and $\mathcal{L}$-cross-sections of wreath products of finite inverse symmetric semigroups $\mathcal{IS}_m \wr_p \mathcal{IS}_n$ up to isomorphism. We show that every isomorphism of $\mathcal{R}$ ($\mathcal{L}$-) cross-sections of $\mathcal{IS}_m \wr_p \mathcal{IS}_n$ is a conjugacy. As an auxiliary result, we get that every isomorphism of $\mathcal{R}$- ($\mathcal{L}$-) cross-sections of $\mathcal{IS}_n$ is also a conjugacy. We also compute the number of non-isomorphic $\mathcal{R}$- ($\mathcal{L}$-) cross-sections of $\mathcal{IS}_m \wr_p \mathcal{IS}_n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源