论文标题

运动金字塔网络,以进行准确有效的心脏运动估计

Motion Pyramid Networks for Accurate and Efficient Cardiac Motion Estimation

论文作者

Yu, Hanchao, Chen, Xiao, Shi, Humphrey, Chen, Terrence, Huang, Thomas S., Sun, Shanhui

论文摘要

心脏运动估计在MRI心脏特征跟踪和功能评估(例如心肌菌株)中起关键作用。在本文中,我们提出了运动金字塔网络,这是一种基于深度学习的新型方法,用于准确有效的心脏运动估计。我们预测并融合了来自特征表示的多个尺度的运动场金字塔,以生成更精致的运动场。然后,我们使用一种新颖的循环教师学生培训策略来进行推理,并进一步改善跟踪性能。我们的教师模型通过渐进运动补偿提供了更准确的运动估计作为监督。我们的学生模型从教师模型中学习,以一步估算运动,同时保持准确性。教师知识蒸馏以循环方式进行,以进一步提高性能。我们提出的方法在两个公共可用的临床数据集上优于强大的基线模型,并通过各种指标和推理时间进行评估。还建议新的评估指标以临床意义的方式表示错误。

Cardiac motion estimation plays a key role in MRI cardiac feature tracking and function assessment such as myocardium strain. In this paper, we propose Motion Pyramid Networks, a novel deep learning-based approach for accurate and efficient cardiac motion estimation. We predict and fuse a pyramid of motion fields from multiple scales of feature representations to generate a more refined motion field. We then use a novel cyclic teacher-student training strategy to make the inference end-to-end and further improve the tracking performance. Our teacher model provides more accurate motion estimation as supervision through progressive motion compensations. Our student model learns from the teacher model to estimate motion in a single step while maintaining accuracy. The teacher-student knowledge distillation is performed in a cyclic way for a further performance boost. Our proposed method outperforms a strong baseline model on two public available clinical datasets significantly, evaluated by a variety of metrics and the inference time. New evaluation metrics are also proposed to represent errors in a clinically meaningful manner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源