论文标题

高旋转对称性与边界区域,以及DS/CFT的康复

Higher-spin symmetry vs. boundary locality, and a rehabilitation of dS/CFT

论文作者

David, Adrian, Neiman, Yasha

论文摘要

我们考虑4D A型高旋转重力与3D自由矢量模型之间的全息二元性。众所周知,边界相关器的Feynman图可以封装在HS-Elgebraic Twistorial表达式中。该表达式不仅可以在单独的边界插入上,而且可以在整个有限源分布上进行评估。我们是第一次这样做,并发现Z_HS的结果不同意通常的CFT分区功能。尽管预计由于接触校正而预计这种分歧,但即使在他们缺席的情况下,它仍然存在。我们将其归因于壳和外壳边界计算之间的混淆。在Lorentzian边界签名中,这通过错误的相对符号的feynman图表表现出,源点的排列不同。在欧几里得,这些标志是模棱两可的,破坏了可能的线性叠加。将局势构建为边界区域与HS对称性之间的冲突,我们牺牲了当地,并选择认真对待Z_HS。在高旋转DS/CFT中溶解长期病理学的回报。尽管我们失去了与局部CFT的连接,但可以通过要求旋转本地边界动作从第一原理中恢复Z_HS的精确形式。

We consider the holographic duality between 4d type-A higher-spin gravity and a 3d free vector model. It is known that the Feynman diagrams for boundary correlators can be encapsulated in an HS-algebraic twistorial expression. This expression can be evaluated not just on separate boundary insertions, but on entire finite source distributions. We do so for the first time, and find that the result Z_HS disagrees with the usual CFT partition function. While such disagreement was expected due to contact corrections, it persists even in their absence. We ascribe it to a confusion between on-shell and off-shell boundary calculations. In Lorentzian boundary signature, this manifests via wrong relative signs for Feynman diagrams with different permutations of the source points. In Euclidean, the signs are instead ambiguous, spoiling would-be linear superpositions. Framing the situation as a conflict between boundary locality and HS symmetry, we sacrifice locality and choose to take Z_HS seriously. We are rewarded by the dissolution of a long-standing pathology in higher-spin dS/CFT. Though we lose the connection to the local CFT, the precise form of Z_HS can be recovered from first principles, by demanding a spin-local boundary action.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源