论文标题
使用导数跟踪SDE模型和风力预测数据的应用来量化不确定性
Quantifying Uncertainty with a Derivative Tracking SDE Model and Application to Wind Power Forecast Data
论文作者
论文摘要
我们基于参数ITô的随机微分方程(SDE)开发数据驱动的方法,以捕获预测误差的真实不对称动力学。我们的SDE框架具有预测,时变均值转换参数以及改进状态依赖性扩散项的时间衍生跟踪。 SDE解决方案的存在,强烈的唯一性和有限性的证明在有原则上的均值均值转换参数的条件下显示。基于原始预测误差空间和Lamperti空间中的矩匹配技术构建的基于近似似然的推理都是通过数值优化过程进行的。我们提出了基于Lamperti空间中的定点似然优化方法的另一项贡献。所有程序都是预测技术的不可知论,它们可以在不同的预测提供商之间进行比较。我们将SDE框架应用于2019年4月至2019年4月之间的历史乌拉圭风力发电和预测数据。
We develop a data-driven methodology based on parametric Itô's Stochastic Differential Equations (SDEs) to capture the real asymmetric dynamics of forecast errors. Our SDE framework features time-derivative tracking of the forecast, time-varying mean-reversion parameter, and an improved state-dependent diffusion term. Proofs of the existence, strong uniqueness, and boundedness of the SDE solutions are shown under a principled condition for the time-varying mean-reversion parameter. Inference based on approximate likelihood, constructed through the moment-matching technique both in the original forecast error space and in the Lamperti space, is performed through numerical optimization procedures. We propose another contribution based on the fixed-point likelihood optimization approach in the Lamperti space. All the procedures are agnostic of the forecasting technology, and they enable comparisons between different forecast providers. We apply our SDE framework to model historical Uruguayan normalized wind power production and forecast data between April and December 2019. Sharp empirical confidence bands of future wind power production are obtained for the best-selected model.