论文标题

$ ell $看到$ k $没有($ p> 3 $时)

What $Ell$ sees that $K$ doesn't (when $p >3$)

论文作者

Morava, Jack

论文摘要

我们使用安德鲁·贝克(Andrew Baker)对$ p $ addic椭圆形频谱的内态的分析($ p> 3 $),这是通过乘以“ hasse不变性” $ e_ {p-1} $乘法所定义的,以呈现其从普通椭圆形曲线的端口中的cepies cepies的cepies的库中,以呈现出来的完整(cere)。高度的$ P $ -ADIC LIFTS两个mod $ p $ cohomology理论$ k(2)$。有关本说明中考虑的主题的更深入的探索,请参见最近关于朱Yifei的论文。

We use Andrew Baker's analysis of the cofiber of the endomorphism of the $p$-adic elliptic spectrum ($p>3$) defined by multiplication by the `Hasse invariant' $E_{p-1}$ to present its completion away from the locus of ordinary elliptic curves as a sum of roughly $p/12$ copies (indexed by supesingular elliptic curves) of $p$-adic lifts of the height two mod $p$ cohomology theory $K(2)$. See a recent paper of Zhu Yifei for a much deeper exploration of the topics considered in this note.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源