论文标题
限制代数
Constraint Algebra in Bigravity
论文作者
论文摘要
约束代数以二级二甲体汉密尔顿形式主义的大型形式衍生而成。这是通过直接的计算来完成的,而无需涉及任何见解,隐式函数和狄拉克括号。四局方法是将大力作用作为滑动和移位的线性函数呈现的唯一方法,而Hassan-Rosen的变换(根据作者的说法是“移动变量的复杂重新定义”),这不是在这里出现的,而不是作为ANSATZ,而是固定Lagrange Multipliper。提供了这种方法与其他方法的比较。
The constraint algebra is derived in the second order tetrad Hamiltonian formalism of the bigravity. This is done by a straightforward calculation without involving any insights, implicit functions, and Dirac brackets. The tetrad approach is the only way to present the bigravity action as a linear functional of lapses and shifts, and the Hassan-Rosen transform (characterized as "a complicated redefinition of the shift variable" according to the authors) appears here not as an ansatz but as fixing of a Lagrange multiplier. A comparison of this approach with the other ones is provided.