论文标题

Hypergraph随机步行,Laplacians和Clustering

Hypergraph Random Walks, Laplacians, and Clustering

论文作者

Hayashi, Koby, Aksoy, Sinan G., Park, Cheong Hee, Park, Haesun

论文摘要

我们提出了一个灵活的框架,用于基于最近提议的随机步行,利用边缘依赖性顶点权重来聚类超图结构数据。当结合边缘依赖性顶点重量(EDVW)时,每个顶点式式式式对架的权重与HyperGraph的加权入射率矩阵相关联。此类权重已用于文本数据集的术语文档表示中。我们解释了如何随机走动EDVW来构建不同的超图拉普拉斯矩阵,然后开发一套聚类方法,这些聚类方法使用这些发病率矩阵和拉普拉斯人进行超图聚类。使用来自现实生活应用程序的几个数据集,我们将这些聚类算法的性能与各种现有的HyperGraph聚类方法进行比较。我们表明,所提出的方法会产生更高质量的集群,并通过突出未来工作的途径来结束。

We propose a flexible framework for clustering hypergraph-structured data based on recently proposed random walks utilizing edge-dependent vertex weights. When incorporating edge-dependent vertex weights (EDVW), a weight is associated with each vertex-hyperedge pair, yielding a weighted incidence matrix of the hypergraph. Such weightings have been utilized in term-document representations of text data sets. We explain how random walks with EDVW serve to construct different hypergraph Laplacian matrices, and then develop a suite of clustering methods that use these incidence matrices and Laplacians for hypergraph clustering. Using several data sets from real-life applications, we compare the performance of these clustering algorithms experimentally against a variety of existing hypergraph clustering methods. We show that the proposed methods produce higher-quality clusters and conclude by highlighting avenues for future work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源