论文标题

在地震成像中提起并放松PDE的逆问题

Lift and Relax for PDE-constrained inverse problems in seismic imaging

论文作者

Fang, Zhilong, Demanet, Laurent

论文摘要

我们为波形反转(LRWI)提供了升力和放松,这种方法通过两种凸化技术的组合来减轻地震全波形反转(FWI)中局部最小问题。第一种技术(升力)将优化问题中的变量集扩展到了这些变量的产品,该变量排列为矩矩阵。这个代数的想法是一种通过半多项式优化问题替代半决赛编程近似的著名方法。具体而言,模型和波场都从向量提升到等级2矩阵。第二种技术(放松)邀请您考虑波动方程,而不是一个硬约束,而是仅满足的软约束 - 一种称为波场重建反演(WRI)的技术。 WRI通过将波动方程式错误作为目标函数中的加权惩罚项来削弱波动方程的约束。轻松的惩罚配方可以通过调整惩罚参数来平衡数据和波动方程式错误。一起,举起和放松,有助于将反问题重新制定为在较高维空间中排名2矩矩阵的一组约束。这种提升策略允许在整个反转过程中具有良好的数据和波动方程式,同时将等级2矩矩阵的数值等级最小化至一个。数值示例表明,与FWI和WRI相比,LRWI可以使用认为太差的初始模型进行成功的反转,并且具有启动频率的数据被认为太高,对于任何一种方法而言。具体而言,在线性梯度启动模型的情况下,LRWI分别将可接受的起始频率从1.0 Hz和2.0 Hz和2.0 Hz和2.5增加到2.0 Hz和2.5。

We present Lift and Relax for Waveform Inversion (LRWI), an approach that mitigates the local minima issue in seismic full waveform inversion (FWI) via a combination of two convexification techniques. The first technique (Lift) extends the set of variables in the optimization problem to products of those variables, arranged as a moment matrix. This algebraic idea is a celebrated way to replace a hard polynomial optimization problem by a semidefinite programming approximation. Concretely, both the model and the wavefield are lifted from vectors to rank-2 matrices. The second technique (Relax) invites to consider the wave equation, not as a hard constraint, but as a soft constraint to be satisfied only approximately - a technique known as wavefield reconstruction inversion (WRI). WRI weakens wave-equation constraints by introducing wave-equation misfits as a weighted penalty term in the objective function. The relaxed penalty formulation enables balancing the data and wave-equation misfits by tuning a penalty parameter. Together, Lift and Relax help reformulate the inverse problem as a set of constraints on a rank-2 moment matrix in a higher dimensional space. Such a lifting strategy permits a good data and wave-equation fit throughout the inversion process, while leaving the numerical rank of the rank-2 moment matrix to be minimized down to one. Numerical examples indicate that compared to FWI and WRI, LRWI can conduct successful inversions using an initial model that would be considered too poor, and data with a starting frequency that would be considered too high, for either method in isolation. Specifically, LRWI increases the acceptable starting frequency from 1.0 Hz and 0.5 Hz to 2.0 Hz and 2.5 for the Marmousi model and the Overthrust model, respectively, in the cases of a linear gradient starting model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源