论文标题

使用转移学习,光谱CT中肺结节的原发性肿瘤起源分类

Primary Tumor Origin Classification of Lung Nodules in Spectral CT using Transfer Learning

论文作者

Hesse, Linde S., de Jong, Pim A., Pluim, Josien P. W., Cheplygina, Veronika

论文摘要

事实证明,肺癌的早期发现可显着降低死亡率。计算机断层扫描(CT)(CT)CT的最新发展可能会提高诊断精度,因为它每次扫描的信息比常规CT产生的信息更多。但是,与分析大量扫描有关的剪切工作量涉及自动诊断方法的需求。因此,我们提出了CT扫描中肺结节的检测和分类系统。此外,我们要观察光谱图像是否可以提高分类器的性能。为了检测结节,我们训练了类似VGG的3D卷积神经网(CNN)。为了获得我们数据集的原发性肿瘤分类器,我们预先训练了一个3D CNN,该3D CNN具有相似的架构在大型公开数据集的结节恶性肿瘤上,即LIDC-IDRI数据集。随后,我们将此预训练的网络用作数据集中的结节的特征提取器。使用支持向量机(SVM)将所得的特征向量分为两个(良性/恶性)和三个(良性/原发性肺癌/转移)类。该分类均在结节和扫描级别上进行。我们获得了LIDC-IDRI数据库中检测和恶性回归的最先进的性能。在我们自己的数据集上的分类性能比结节级预测高。对于三类扫描级分类,我们获得了78 \%的精度。光谱特征确实提高了分类器的性能,但没有显着。我们的工作表明,预训练的特征提取器可以用作肺结节的主要肿瘤起源分类器,从而消除了对新网络和大型数据集进行精心微调的需求。代码可在\ url {https://github.com/tueimage/lung-nodule-msc-2018}中获得。

Early detection of lung cancer has been proven to decrease mortality significantly. A recent development in computed tomography (CT), spectral CT, can potentially improve diagnostic accuracy, as it yields more information per scan than regular CT. However, the shear workload involved with analyzing a large number of scans drives the need for automated diagnosis methods. Therefore, we propose a detection and classification system for lung nodules in CT scans. Furthermore, we want to observe whether spectral images can increase classifier performance. For the detection of nodules we trained a VGG-like 3D convolutional neural net (CNN). To obtain a primary tumor classifier for our dataset we pre-trained a 3D CNN with similar architecture on nodule malignancies of a large publicly available dataset, the LIDC-IDRI dataset. Subsequently we used this pre-trained network as feature extractor for the nodules in our dataset. The resulting feature vectors were classified into two (benign/malignant) and three (benign/primary lung cancer/metastases) classes using support vector machine (SVM). This classification was performed both on nodule- and scan-level. We obtained state-of-the art performance for detection and malignancy regression on the LIDC-IDRI database. Classification performance on our own dataset was higher for scan- than for nodule-level predictions. For the three-class scan-level classification we obtained an accuracy of 78\%. Spectral features did increase classifier performance, but not significantly. Our work suggests that a pre-trained feature extractor can be used as primary tumor origin classifier for lung nodules, eliminating the need for elaborate fine-tuning of a new network and large datasets. Code is available at \url{https://github.com/tueimage/lung-nodule-msc-2018}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源