论文标题
学习将复发性神经网络中的自上而下和自下而上的信号与模块的关注相结合
Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules
论文作者
论文摘要
强大的感知依赖于自下而上的信号和自上而下的信号。自下而上的信号包括直接通过感觉观察到的信号。自上而下的信号包括基于过去经验和短期记忆的信念和期望,例如“花生酱和〜...”如何完成。自下而上的信息和自上而下的信息的最佳组合仍然是一个开放的问题,但是组合的方式必须是动态的,上下文和任务依赖性。为了有效利用可用的大量潜在自上而下的信息,并防止双向架构中的混合信号的粘贴,需要机制来限制信息流。我们探索深度复发的神经网架构,其中使用注意力将自下而上的信号动态组合。体系结构的模块化进一步限制了信息的共享和通信。注意力和模块化直接信息流共同导致知觉和语言任务的可靠绩效改善,尤其是提高了分心和嘈杂数据的鲁棒性。我们在语言建模,顺序图像分类,视频预测和强化学习方面进行了各种基准,表明\ emph {双向}信息流可以改善强大基准的结果。
Robust perception relies on both bottom-up and top-down signals. Bottom-up signals consist of what's directly observed through sensation. Top-down signals consist of beliefs and expectations based on past experience and short-term memory, such as how the phrase `peanut butter and~...' will be completed. The optimal combination of bottom-up and top-down information remains an open question, but the manner of combination must be dynamic and both context and task dependent. To effectively utilize the wealth of potential top-down information available, and to prevent the cacophony of intermixed signals in a bidirectional architecture, mechanisms are needed to restrict information flow. We explore deep recurrent neural net architectures in which bottom-up and top-down signals are dynamically combined using attention. Modularity of the architecture further restricts the sharing and communication of information. Together, attention and modularity direct information flow, which leads to reliable performance improvements in perceptual and language tasks, and in particular improves robustness to distractions and noisy data. We demonstrate on a variety of benchmarks in language modeling, sequential image classification, video prediction and reinforcement learning that the \emph{bidirectional} information flow can improve results over strong baselines.