论文标题
将解剖信息带入神经元网络模型
Bringing Anatomical Information into Neuronal Network Models
论文作者
论文摘要
为了构建神经元网络模型,计算神经科学家可以访问广泛的解剖学数据,但是,这些数据仍然倾向于仅覆盖要确定的参数的一小部分。查找和解释最相关的数据,估计缺失值以及将各种来源的数据和估计结合到一个连贯的整体中是一项艰巨的任务。在本章中,我们旨在通过描述可能对神经元网络模型有用的解剖学数据的主要类型来为建模者提供指导。我们进一步讨论了与数据解释相关的基本实验技术的各个方面,列出了特别全面的数据集,并描述了实验数据中填充空白的方法。这种“预测连接组学”的方法估计了基于与已知数量的统计关系所缺乏的数据。在某些情况下,使用组织原则是有启发性的,并且在统一的框架内可以利用大脑结构的规律性来为计算模型提供信息。此外,我们谈到了可能影响预测的神经元网络动态的大脑组织最突出的特征,重点是哺乳动物的大脑皮层。鉴于建模者仍然需要建模的复杂数据景观,到处都是漏洞和绊脚石,因此,至关重要的是,神经解剖学领域正在朝着越来越多地系统的数据收集,表示和出版物迈进。
For constructing neuronal network models computational neuroscientists have access to wide-ranging anatomical data that nevertheless tend to cover only a fraction of the parameters to be determined. Finding and interpreting the most relevant data, estimating missing values, and combining the data and estimates from various sources into a coherent whole is a daunting task. With this chapter we aim to provide guidance to modelers by describing the main types of anatomical data that may be useful for informing neuronal network models. We further discuss aspects of the underlying experimental techniques relevant to the interpretation of the data, list particularly comprehensive data sets, and describe methods for filling in the gaps in the experimental data. Such methods of `predictive connectomics' estimate connectivity where the data are lacking based on statistical relationships with known quantities. It is instructive, and in certain cases necessary, to use organizational principles that link the plethora of data within a unifying framework where regularities of brain structure can be exploited to inform computational models. In addition, we touch upon the most prominent features of brain organization that are likely to influence predicted neuronal network dynamics, with a focus on the mammalian cerebral cortex. Given the still existing need for modelers to navigate a complex data landscape full of holes and stumbling blocks, it is vital that the field of neuroanatomy is moving toward increasingly systematic data collection, representation, and publication.