论文标题

无监督的深度学习,用于大规模的MIMO混合边界

Unsupervised Deep Learning for Massive MIMO Hybrid Beamforming

论文作者

Hojatian, Hamed, Nadal, Jeremy, Frigon, Jean-Francois, Leduc-Primeau, Francois

论文摘要

混合边界成形是一种有希望的技术,可在提供高数据速率的同时降低大量多输入多输出(MIMO)系统的复杂性和成本。但是,混合编码器设计是一项具有挑战性的任务,需要通道状态信息(CSI)反馈并解决复杂的优化问题。本文提出了一种基于RSSI的新型无监督的深度学习方法,以设计大型MIMO系统中的混合边界。此外,我们建议i)一种在初始访问(IA)中设计同步信号(SS)的方法; ii)一种设计模拟预码器的代码簿的方法。我们还通过在各种情况下通过现实的渠道模型评估系统性能。我们表明,所提出的方法不仅可以通过使用部分CSI反馈来大大提高频谱效率,尤其是在频段双链(FDD)通信中,而且还具有接近最佳的总和率,并且优于其他最先进的全CSI解决方案。

Hybrid beamforming is a promising technique to reduce the complexity and cost of massive multiple-input multiple-output (MIMO) systems while providing high data rate. However, the hybrid precoder design is a challenging task requiring channel state information (CSI) feedback and solving a complex optimization problem. This paper proposes a novel RSSI-based unsupervised deep learning method to design the hybrid beamforming in massive MIMO systems. Furthermore, we propose i) a method to design the synchronization signal (SS) in initial access (IA); and ii) a method to design the codebook for the analog precoder. We also evaluate the system performance through a realistic channel model in various scenarios. We show that the proposed method not only greatly increases the spectral efficiency especially in frequency-division duplex (FDD) communication by using partial CSI feedback, but also has near-optimal sum-rate and outperforms other state-of-the-art full-CSI solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源