论文标题

飞机代数曲线

Plane algebraic curves in fancy balls

论文作者

Kruzhilin, N. G., Orevkov, S. Yu.

论文摘要

Boileau and Rudolph在$ 3 $ -SPHERE中称为链接$ L $,如果可以将其作为代数曲线$ a $ a $ a $ \ bf c^2 $与光滑嵌入式$ 4 $ -BALL $ -BALL $ b $的边界的交集,则为$ \ bf c $ boundary。他们表明,某些链接不是$ \ bf c $ boundaries。我们说,如果连接$ a \ setminus b $,则$ l $是强大的$ \ bf c $ bugnary。特别是,所有准阳性链接都是强大的$ \ bf c $ boundaries。在本文中,我们提供了非质量阳性强$ \ bf c $ boundaries和non-strong $ \ bf c $ boundaries的示例。我们对(强)$ \ bf c $ boundaries进行了完整的分类,最多只有5个交叉口。

Boileau and Rudolph called a link $L$ in the $3$-sphere a $\bf C$-boundary if it can be realized as the intersection of an algebraic curve $A$ in $\bf C^2$ with the boundary of a smooth embedded $4$-ball $B$. They showed that some links are not $\bf C$-boundaries. We say that $L$ is a strong $\bf C$-boundary if $A\setminus B$ is connected. In particular, all quasipositive links are strong $\bf C$-boundaries. In this paper we give examples of non-quasipositive strong $\bf C$-boundaries and non-strong $\bf C$-boundaries. We give a complete classification of (strong) $\bf C$-boundaries with at most 5 crossings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源