论文标题

加权Hypersoft配置模型

Weighted hypersoft configuration model

论文作者

Voitalov, Ivan, van der Hoorn, Pim, Kitsak, Maksim, Papadopoulos, Fragkiskos, Krioukov, Dmitri

论文摘要

网络的最大熵空模型具有不同的口味,取决于最大化熵的约束类型。如果约束是在学位序列或分布上,我们将处理配置模型。如果确切地限制了度序列,则具有给定度序列的随机图的相应的微型典型集合是配置模型本身。如果仅平均限制了度序列,则具有预期度序列的随机图的相应大型典型集合是软配置模型。如果根本没有固定度序列,而是从固定分布中随机绘制的,则具有给定度分布的相应的随机图的超细性集合是Hypersoft配置模型,对动态现实世界网络的更充分的描述,在该网络中,从未固定的程度序列固定但程度分布通常保持稳定。在这里,我们介绍了加权网络的Hypersoft配置模型。主要的贡献是具有幂律程度和强度分布的模型的特定版本,以及具有学位的优势缩放的超级线性缩放,模仿了某些现实世界网络的属性。作为副产品,我们将稀疏图形的概念及其熵推广到加权网络。

Maximum entropy null models of networks come in different flavors that depend on the type of constraints under which entropy is maximized. If the constraints are on degree sequences or distributions, we are dealing with configuration models. If the degree sequence is constrained exactly, the corresponding microcanonical ensemble of random graphs with a given degree sequence is the configuration model per se. If the degree sequence is constrained only on average, the corresponding grand-canonical ensemble of random graphs with a given expected degree sequence is the soft configuration model. If the degree sequence is not fixed at all but randomly drawn from a fixed distribution, the corresponding hypercanonical ensemble of random graphs with a given degree distribution is the hypersoft configuration model, a more adequate description of dynamic real-world networks in which degree sequences are never fixed but degree distributions often stay stable. Here, we introduce the hypersoft configuration model of weighted networks. The main contribution is a particular version of the model with power-law degree and strength distributions, and superlinear scaling of strengths with degrees, mimicking the properties of some real-world networks. As a byproduct, we generalize the notions of sparse graphons and their entropy to weighted networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源