论文标题
低光图像恢复与短期和长期曝光原始对
Low-light Image Restoration with Short- and Long-exposure Raw Pairs
论文作者
论文摘要
使用手持式移动设备的低光成像是一个具有挑战性的问题。受现有模型和培训数据的限制,大多数现有方法不能在实际情况下有效地应用。在本文中,我们通过使用短期和长期暴露图像的互补信息提出了一种新的低光图像恢复方法。我们首先提出了一种新型的数据生成方法,以通过在低光环境中模拟成像管道来综合现实的短和寿命原始图像。然后,我们设计了一个新的长短曝光融合网络(LSFNET)来处理低光图像融合的问题,包括高噪声,运动模糊,颜色失真和未对准。所提出的LSFNET将成对的短期和长期暴露原始图像作为输入,并输出清晰的RGB图像。使用我们的数据生成方法和提议的LSFNET,我们可以恢复原始场景的详细信息和颜色,并有效地提高低光图像质量。实验表明,我们的方法可以胜过最先进的方法。
Low-light imaging with handheld mobile devices is a challenging issue. Limited by the existing models and training data, most existing methods cannot be effectively applied in real scenarios. In this paper, we propose a new low-light image restoration method by using the complementary information of short- and long-exposure images. We first propose a novel data generation method to synthesize realistic short- and longexposure raw images by simulating the imaging pipeline in lowlight environment. Then, we design a new long-short-exposure fusion network (LSFNet) to deal with the problems of low-light image fusion, including high noise, motion blur, color distortion and misalignment. The proposed LSFNet takes pairs of shortand long-exposure raw images as input, and outputs a clear RGB image. Using our data generation method and the proposed LSFNet, we can recover the details and color of the original scene, and improve the low-light image quality effectively. Experiments demonstrate that our method can outperform the state-of-the art methods.