论文标题
通过非线性插入电子漂移波的非线性插入在tokamak边缘附近的L模式放电中的非线性插入式的大地测量模式的间歇性激发
The intermittent excitation of geodesic acoustic mode by nonlinear Instanton of electron drift wave envelope in L-mode discharge near tokamak edge
论文作者
论文摘要
在存在纬向流动的情况下,漂移波的演变中有两个不同的阶段。我们称之为Caviton的长寿命常规阶段,我们称之为速度(径向方向)短暂的行驶波阶段。对于由离子温度梯度模式驱动的漂移波湍流(ITG),这两个动力学阶段在[Zhang Y Z,Liu Z Y,Xie T,Mahajan S M和Liu J 2017等离子体物理学24 122304]中显示。在本文中,我们表明,当湍流沿电子方向旋转时,ITG湍流的动态属性很容易复制。我们的模型计算专门针对众所周知的Δ_E模型中的环形电子漂移波(EDW)。尽管基本计算与ITG对应物并行呈现,但这里有更多重点是Instanton的运动。在Tokamaks中观察到的几种突然现象,例如本文所示的地球声学模式(GAM)的间歇性激发可以归因于Instanton的突然和快速径向运动。该计算带来了Instanton的定义特征:它是在过渡后立即开始的线性行动波。然后,它以增加频率一直到20 kHz的频率发展到非线性阶段。雷诺应力的调节纬向流动方程将引起GAM的共振激发。由于反应区域中多个中央合理表面之间的随机相混合,因此间歇性显示出来。
There are two distinct phases in the evolution of drift wave envelope in the presence of zonal flow. A long-lived standing wave phase, which we call the Caviton, and a short-lived traveling wave phase (in radial direction) we call the Instanton. For drift wave turbulence driven by ion temperature gradient mode (ITG), these two stages of dynamics were displayed in [Zhang Y Z, Liu Z Y, Xie T, Mahajan S M and Liu J 2017 Physics of Plasmas 24 122304]. In this paper we show that the dynamical attributes of ITG turbulence are readily replicated when the turbulence rotates in the electron direction; our model calculation deals specifically with the toroidal electron drift waves (EDW) in the well-known δ_e model. While the basic calculations are presented in parallel to the ITG counterpart, more emphasis is laid here on the motion of Instanton; several abrupt phenomena observed in tokamaks, such as intermittent excitation of geodesic acoustic mode (GAM) shown in this paper, could be attributed to the sudden and fast radial motion of Instanton. The calculation brings out the defining characteristics of the Instanton: it begins as a linear traveling wave right after the transition. Then, it evolves to a nonlinear stage with increasing frequency all the way to 20 kHz. The modulation to Reynolds stress in zonal flow equation will cause resonant excitation to GAM. The intermittency is shown due to the random phase mixing between multiple central rational surfaces in the reaction region.