论文标题
从观察时间序列中重建依赖于制度的因果关系
Reconstructing regime-dependent causal relationships from observational time series
论文作者
论文摘要
当实验性干预措施是不可行的或不道德的,从观察时间序列数据中推断出从科学和工程的关键问题是一个关键问题。在过去的几十年中,增加数据的可用性促使了许多因果发现方法的发展,每种方法都解决了这项艰巨任务的特定挑战。在本文中,我们着重于一个重要的挑战,该挑战是时间序列因果发现的核心:与政权有关的因果关系。通常,动态系统的特征是转变,具体取决于某些,通常是持久的,未观察到的背景制度,不同的政权可能会显示出不同的因果关系。在这里,我们假设一个持久和离散的制度变量导致有限数量的政权,我们可以在其中假设固定因果关系。为了检测与政权依赖性因果关系,我们将基于条件独立的PCMCI方法与制度学习优化方法相结合。 PCMCI允许线性和非线性,高维时间序列因果发现。在许多数值实验上评估了我们的方法,即使PCMCI,表明它可以区分具有不同因果方向,时间滞后,效果和因果关系的迹象以及变量的自相关性的变化。此外,政权PCMCI用于观察厄尔尼诺南部振荡和印度降雨,在现实世界数据集中也证明了技能。
Inferring causal relations from observational time series data is a key problem across science and engineering whenever experimental interventions are infeasible or unethical. Increasing data availability over the past decades has spurred the development of a plethora of causal discovery methods, each addressing particular challenges of this difficult task. In this paper we focus on an important challenge that is at the core of time series causal discovery: regime-dependent causal relations. Often dynamical systems feature transitions depending on some, often persistent, unobserved background regime, and different regimes may exhibit different causal relations. Here, we assume a persistent and discrete regime variable leading to a finite number of regimes within which we may assume stationary causal relations. To detect regime-dependent causal relations, we combine the conditional independence-based PCMCI method with a regime learning optimisation approach. PCMCI allows for linear and nonlinear, high-dimensional time series causal discovery. Our method, Regime-PCMCI, is evaluated on a number of numerical experiments demonstrating that it can distinguish regimes with different causal directions, time lags, effects and sign of causal links, as well as changes in the variables' autocorrelation. Further, Regime-PCMCI is employed to observations of El Niño Southern Oscillation and Indian rainfall, demonstrating skill also in real-world datasets.