论文标题

数据驱动的系统粗粒模型的不确定性定量

Data-driven Uncertainty Quantification for Systematic Coarse-grained Models

论文作者

Jin, Tangxin, Chazirakis, Anthony, Kalligiannaki, Evangelia, Harmandaris, Vagelis, Katsoulakis, Markos A.

论文摘要

在这项工作中,我们提出了量化分子和大分子系统自下而上粗粒模型中置信度的方法。在过去的几十年中,粗粒方法已被广泛使用,以扩展通过模拟方法访问的长度和时间尺度。但是,由于尚未确定细粒度数据的可用性有限,对诱发错误的量化尚未确定。在这里,我们采用严格的统计方法来推导通过均值的多体力潜力,相对熵,相对熵速率最小化和力匹配方法获得的最佳粗糙模型的保证。具体而言,我们介绍并采用统计方法,例如引导程序和折刀,以推断有限数量的样本(即分子构型)的置信度。此外,我们估计渐近置信区间,假设对相空间进行了足够的采样。我们证明了对非反应方法的需求,并通过两种应用量化了置信度。第一个是在慢速过程上投射的两个尺度快速/缓慢的扩散过程。在这个基准示例中,我们为独立和时间序列数据建立了方法。其次,我们将这些不确定性定量方法应用于聚合物大体系统。我们将原子聚乙烯熔体视为开发用于大分子系统的粗粒工具的原型系统。对于此系统,我们估计了相对于可用微观数据的数量,我们估计了粗粒的力场并呈现置信度。

In this work, we present methodologies for the quantification of confidence in bottom-up coarse-grained models for molecular and macromolecular systems. Coarse-graining methods have been extensively used in the past decades in order to extend the length and time scales accessible by simulation methodologies. The quantification, though, of induced errors due to the limited availability of fine-grained data is not yet established. Here, we employ rigorous statistical methods to deduce guarantees for the optimal coarse models obtained via approximations of the multi-body potential of mean force, with the relative entropy, the relative entropy rate minimization, and the force matching methods. Specifically, we present and apply statistical approaches, such as bootstrap and jackknife, to infer confidence sets for a limited number of samples, i.e., molecular configurations. Moreover, we estimate asymptotic confidence intervals assuming adequate sampling of the phase space. We demonstrate the need for non-asymptotic methods and quantify confidence sets through two applications. The first is a two-scale fast/slow diffusion process projected on the slow process. With this benchmark example, we establish the methodology for both independent and time-series data. Second, we apply these uncertainty quantification approaches on a polymeric bulk system. We consider an atomistic polyethylene melt as the prototype system for developing coarse-graining tools for macromolecular systems. For this system, we estimate the coarse-grained force field and present confidence levels with respect to the number of available microscopic data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源