论文标题
凝结相中的准颗粒的有效质量路径积分模拟
Effective Mass Path Integral Simulations of Quasiparticles in Condensed Phases
论文作者
论文摘要
凝结相中的量子多体问题通常使用准颗粒描述来简化,例如在周期性固体中用于电子运动的有效质量理论。这些方法通常是理解许多基本冷凝相过程的基础,包括太阳能收集和光催化的分子机制。尽管这些有效的粒子很重要,但仍然需要计算方法,可以探索它们在化学相关的长度和时间尺度上的行为。当粒子与环境之间的相互作用很重要时,尤其如此。我们引入了一种通过将有效的质量理论与量子颗粒的路径积分处理相结合的方法来研究缩合相的准粒子的方法。例如,该框架将材料的通常各向异性电子带结构结合到路径积分模拟方案中,以实现量子限制中的准粒子进行建模。我们通过对氯化钾固体钾中的激子进行建模,并通过单层钼中的硫次空位捕获二硫化硫化钾,证明了有效质量路径积分模拟的实用性。
The quantum many-body problem in condensed phases is often simplified using a quasiparticle description, such as effective mass theory for electron motion in a periodic solid. These approaches are often the basis for understanding many fundamental condensed phase processes, including the molecular mechanisms underlying solar energy harvesting and photocatalysis. Despite the importance of these effective particles, there is still a need for computational methods that can explore their behavior on chemically relevant length and time scales. This is especially true when the interactions between the particles and their environment are important. We introduce an approach for studying quasiparticles in condensed phases by combining effective mass theory with the path integral treatment of quantum particles. This framework incorporates the generally anisotropic electronic band structure of materials into path integral simulation schemes to enable modeling of quasiparticles in quantum confinement, for example. We demonstrate the utility of effective mass path integral simulations by modeling an exciton in solid potassium chloride and electron trapping by a sulfur vacancy in monolayer molybdenum disulfide.