论文标题

一些I-Mark游戏

Some i-Mark games

论文作者

Friman, Oren, Nivasch, Gabriel

论文摘要

让$ s $是一组正整数,让$ d $是一组大于$ 1 $的整数。游戏$ i $ -mark $(s,d)$是Sopena(2016)引入的公正组合游戏,该游戏带有一堆令牌。在每个回合中,如果桩尺寸可除以$ d $,则玩家可以从堆中减去S $中的$ s \ in s $,或将桩的大小除以$ d \。 Sopena用$ s = [1,t-1] $和$ d = \ {d \} $部分分析了游戏,用于$ d \ not \ equiv 1 \ pmod t $,但留下了case $ d \ equiv 1 \ pmod t $打开。 我们通过计算$ i $ -mark $([1,t-1],\ {d \})$的sprague-grundy函数来解决此问题。我们还计算所有$ k $的$ i $ -mark $(\ {2 \},\ {2k + 1 \})$的sprague-grundy函数,并表明它表现出相似的行为。最后,按照Sopena提出了$ | d |> 1 $的看法,我们为游戏$ i $ -mark $(\ {1 \},\ {2,3 \})$获得了一些部分结果,其sprague-grundy函数似乎不错,并且没有表现出任何干净的模式。我们证明,每个值$ 0,1,2 $在其SG序列中经常发生,连续出现之间的间隙长度最大。

Let $S$ be a set of positive integers, and let $D$ be a set of integers larger than $1$. The game $i$-Mark$(S,D)$ is an impartial combinatorial game introduced by Sopena (2016), which is played with a single pile of tokens. In each turn, a player can subtract $s \in S$ from the pile, or divide the size of the pile by $d \in D$, if the pile size is divisible by $d$. Sopena partially analyzed the games with $S=[1, t-1]$ and $D=\{d\}$ for $d \not\equiv 1 \pmod t$, but left the case $d \equiv 1 \pmod t$ open. We solve this problem by calculating the Sprague-Grundy function of $i$-Mark$([1,t-1],\{d\})$ for $d \equiv 1 \pmod t$, for all $t,d \geq 2$. We also calculate the Sprague-Grundy function of $i$-Mark$(\{2\},\{2k + 1\})$ for all $k$, and show that it exhibits similar behavior. Finally, following Sopena's suggestion to look at games with $|D|>1$, we derive some partial results for the game $i$-Mark$(\{1\}, \{2, 3\})$, whose Sprague-Grundy function seems to behave erratically and does not show any clean pattern. We prove that each value $0,1,2$ occurs infinitely often in its SG sequence, with a maximum gap length between consecutive appearances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源