论文标题
第一个原理的极性形态:pbtio $ _3 $ srtio $ _3 $ substrates和$ p(2 \ timesλ)$表面重建
Polar morphologies from first principles: PbTiO$_3$ films on SrTiO$_3$ substrates and the $p(2 \times Λ)$ surface reconstruction
论文作者
论文摘要
低维结构由铁电(FE)PBTIO $ _3 $(PTO)和量子副副质SRTIO $ _3 $(STO)组成,是具有复杂极化纹理的宿主,例如极性波,磁磁体范围,磁通范围域和极性skyrmion阶段。密度功能理论(DFT)模拟可以提供有关此顺序的洞察力,但是,受模拟数千个所需原子所需的计算工作限制。为了减轻此问题,我们在DFT中使用新型的多站点支持函数(MSSF)方法来减少电子地面盐的解决方案时间,同时保持高精度。使用MSSFS,我们在具有系统尺寸$> 2000美元原子的STO基材上模拟薄PTO膜。在超薄极限中,具有圆柱性手性气泡的极波纹理作为完全通量闭合结构域和面内极化之间的中间相。这是由[001]方向上构图折断对称对称性所生的内部偏置场驱动的。由于该偏见场的确切性质敏感地取决于膜边界条件,因此通过仔细选择底物,表面终止或使用叠加层,这为操纵纳米级的手性秩序的设计提供了新的设计原理。抗铁病疗法(AFD)命令与这些极性纹理进行局部相互作用,从而在PBO终止表面上产生强大的Fe/Afd耦合,驱动A $ P(2 \ timesλ)$表面重建。这为局部控制铁电性提供了另一种途径。
Low dimensional structures comprised of ferroelectric (FE) PbTiO$_3$ (PTO) and quantum paraelectric SrTiO$_3$ (STO) are hosts to complex polarization textures such as polar waves, flux-closure domains and polar skyrmion phases. Density functional theory (DFT) simulations can provide insight into this order, but, are limited by the computational effort needed to simulate the thousands of required atoms. To relieve this issue, we use the novel multi-site support function (MSSF) method within DFT to reduce the solution time for the electronic groundstate whilst preserving high accuracy. Using MSSFs, we simulate thin PTO films on STO substrates with system sizes $>2000$ atoms. In the ultrathin limit, the polar wave texture with cylindrical chiral bubbles emerges as an intermediate phase between full flux closure domains and in-plane polarization. This is driven by an internal bias field born of the compositionally broken inversion symmetry in the [001] direction. Since the exact nature of this bias field depends sensitively on the film boundary conditions, this informs a new principle of design for manipulating chiral order on the nanoscale through the careful choice of substrate, surface termination or use of overlayers. Antiferrodistortive (AFD) order locally interacts with these polar textures giving rise to strong FE/AFD coupling at the PbO terminated surface driving a $p(2 \times Λ)$ surface reconstruction. This offers another pathway for the local control of ferroelectricity.