论文标题
Tiledsoilingnet:使用覆盖率度量
TiledSoilingNet: Tile-level Soiling Detection on Automotive Surround-view Cameras Using Coverage Metric
论文作者
论文摘要
汽车摄像机,尤其是环绕视图相机,往往会被泥浆,水,雪等弄脏。对于更高水平的自动驾驶,有必要具有污染检测算法,该算法将触发自动清洁系统。对于控制清洁系统,必须在图像中局部检测污染。还必须在未征服的地区实现部分功能,同时降低对脏区域的信心。尽管可以使用语义分割任务来解决此问题,但我们探索了针对低功率嵌入式系统部署的更有效的解决方案。我们提出了一种新的方法,可以直接在瓷砖内回归每种污染类型的面积。我们将其称为覆盖范围。所提出的方法比在瓷砖中学习主导阶层更好,因为多种污垢类型通常发生在瓷砖内。它还具有处理粗多边形注释的优点,这将导致分割任务。所提出的污垢覆盖范围解码器比等效分割解码器快的数量级。我们还使用异步后传播算法将其集成到对象检测和语义分割多任务模型中。所使用的数据集的一部分将在我们的木景数据集的一部分中公开发布,以鼓励进一步的研究。
Automotive cameras, particularly surround-view cameras, tend to get soiled by mud, water, snow, etc. For higher levels of autonomous driving, it is necessary to have a soiling detection algorithm which will trigger an automatic cleaning system. Localized detection of soiling in an image is necessary to control the cleaning system. It is also necessary to enable partial functionality in unsoiled areas while reducing confidence in soiled areas. Although this can be solved using a semantic segmentation task, we explore a more efficient solution targeting deployment in low power embedded system. We propose a novel method to regress the area of each soiling type within a tile directly. We refer to this as coverage. The proposed approach is better than learning the dominant class in a tile as multiple soiling types occur within a tile commonly. It also has the advantage of dealing with coarse polygon annotation, which will cause the segmentation task. The proposed soiling coverage decoder is an order of magnitude faster than an equivalent segmentation decoder. We also integrated it into an object detection and semantic segmentation multi-task model using an asynchronous back-propagation algorithm. A portion of the dataset used will be released publicly as part of our WoodScape dataset to encourage further research.