论文标题
测试在COPAS选择模型下的荟萃分析中出版偏差
Testing for publication bias in meta-analysis under Copas selection model
论文作者
论文摘要
在荟萃分析中,出版偏见是一个众所周知的,重要且具有挑战性的问题,因为如果检索到审查的研究样本是有偏见的,则威胁了荟萃分析结果的有效性。处理出版偏见的一种流行方法是COPAS选择模型,该模型提供了灵活的灵敏度分析,用于校正估计值,并深入了解数据抑制机制。但是,缺乏COPAS选择模型下的严格测试程序,以检测偏差。为了填补这一空白,我们开发了一个基于分数的测试,用于检测COPAS选择模型下的出版物偏差。我们揭示了标准分数测试统计量的行为是不规则的,因为COPAS选择模型的参数在零假设下消失,导致可识别性问题。我们提出了一个新颖的测试统计量并得出其限制分布。提供了引导程序,以获取用于实际应用的测试的p值。我们进行了广泛的蒙特卡洛模拟,以评估拟议的测试的性能,并将方法应用于现有的几个荟萃分析。
In meta-analyses, publication bias is a well-known, important and challenging issue because the validity of the results from a meta-analysis is threatened if the sample of studies retrieved for review is biased. One popular method to deal with publication bias is the Copas selection model, which provides a flexible sensitivity analysis for correcting the estimates with considerable insight into the data suppression mechanism. However, rigorous testing procedures under the Copas selection model to detect bias are lacking. To fill this gap, we develop a score-based test for detecting publication bias under the Copas selection model. We reveal that the behavior of the standard score test statistic is irregular because the parameters of the Copas selection model disappear under the null hypothesis, leading to an identifiability problem. We propose a novel test statistic and derive its limiting distribution. A bootstrap procedure is provided to obtain the p-value of the test for practical applications. We conduct extensive Monte Carlo simulations to evaluate the performance of the proposed test and apply the method to several existing meta-analyses.